Automatic Ontology Matching using Application Semantics

Avigdor Gal? Giovanni Modica! Hasan Jamil! Ami Eyal®

Abstract

We propose the use of application semantics to enhance the process of semantic reconciliation.
Application semantics involves those elements of business reasoning that affect the way concepts
are presented to users: their layout, etc. In particular, we pursue in this paper the notion of
precedence, in which temporal constraints determine the order in which concepts are presented to
the user. Existing matching algorithms use either syntactic means (such as term matching and
domain matching) or model semantic means, the use of structural information that is provided
by the specific data model to enhance the matching process. The novelty of our approach lies
in proposing a class of matching techniques that takes advantage of ontological structures and
application semantics. As an example, the use of precedence to reflect business rules has not
been applied elsewhere, to the best of our knowledge. We have tested the process for a variety
of Web sites in domains such as car rentals and airline reservations, and share our experiences
with precedence and its limitations.

1 Introduction and motivation

The ambiguous interpretation of concepts describing the meaning of data in data sources (e.g.,
database schemata, XML DTDs, RDF schemata, and HTML form tags) is commonly known as
semantic heterogeneity. Semantic heterogeneity, a well-known obstacle to data source integration
[13], is resolved through a process of semantic reconciliation, which matches concepts from het-
erogeneous data sources. Traditionally, the complexity of semantic reconciliation[13] required that
it be performed by a human observer (a designer, a DBA, or a user) [50, 27]. However, manual
reconciliation (with or without computer-aided tools) tends to be slow and inefficient in dynamic
environments, and for obvious reasons does not scale. Therefore, the introduction of the semantic
Web vision [7] and the shift towards machine-understandable Web resources has made clear the
importance of automatic semantic reconciliation.

As an example, consider the Web search, an information-seeking process conducted through an
interactive interface. This interface may be as simple as a single input field (as in the case of a

*Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel
TMississippi State University, Mississippi State University MS 39762, USA
Mississippi State University, Mississippi State University MS 39762, USA
$Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel

general-purpose search engine). Web interfaces may also be highly elaborate: consider a car rental
or airline reservation interface containing multiple Web pages, with numerous input fields, that
are sometimes content dependent (e.g., when a rented car is to be returned at the point of origin,
no input field is required for the return location). A Web search typically involves scanning and
comparing Web resources, either directly or via some information portal a process hampered by
their heterogeneity. Following the semantic Web vision, semantic reconciliation should be inherent
in the design of smart software agents for information seeking. Such agents can fill Web forms and
rewrite user queries by performing semantic reconciliation among different HTML forms.

To date, many algorithms have been proposed to support either semi-automatic or fully auto-
matic matching of heterogeneous concepts in data sources (see Section 1.1 for a detailed discussion).
Existing matching algorithms make comparisons based on measures that are either syntactic in na-
ture (such as term matching and domain matching) or based on model semantics. By model
semantics, we mean the use of structural information that is provided by the specific data model
to enhance the matching process. For example, XML provides a hierarchical structure that can be
exploited in identifying links among concepts and thus allow a smooth Web search.

In this paper, we propose the use of application semantics to enhance the process of semantic
reconciliation. Application semantics involves those elements of business reasoning that affect the
way concepts are presented to users, such as layout. In particular, we pursue in this paper the
notion of precedence, in which temporal constraints determine the order in which concepts are
presented to the user.

We use ontologies as an interface conceptualization tool for representing model and application
level semantics to improve the quality of the matching process. Four ontological constructs are
used in this work, namely terms, values, composition, and precedence. The first two are syntactical
comparison constructs, while the third falls into the category of model-specific semantics, and the
fourth belongs to application semantics. These constructs are extracted from form entries and
utilized in automatic conceptual modeling of a Web resource. Terms, values, and composition are
borrowed from [10, 11]. Precedence, a unique feature of our model, represents the sequence in
which terms are laid out within forms, imitating temporal constraints embedded in business rules
(e.g., a car rental reservation form would ask for pick-up information before return information).

Given two ontologies, we suggest a set of algorithms to match terminologies in two Web re-
sources. The proposed matching process is enhanced by basic Information Retrieval techniques for
string matching. We introduce two new algorithms to compute similarity, based on composition
and precedence.

The novelty of our approach lies in the introduction of a sophisticated matching technique
that takes advantage of ontological constructs and application semantics. In particular, the use of
precedence to reflect business rules has not been applied elsewhere, to the best of our knowledge.
We have tested the process for a variety of Web sites in domains such as car rentals and airline
reservations, and evaluated the performance of each algorithm individually as well as in combination
with others. We highlight the benefits and limits of using the precedence construct as a guideline
for future research into application semantics.

We shall use Web sites of car rental companies as a running case study. In our experiments,
we extract ontologies from HTML documents. We recognize the fact that XML may serve as a
better candidate for ontology exploration. In fact, while one can extract terms and structure from
XML documents, one has to mine for ontologies in HT'ML documents. However, current trends
in deploying XML as part of the organization data management scheme suggest that while XML
may be used for B2B communication, and to some extent as a storage mechanism, interactive
sessions still use HT'ML. Therefore, it is possible that XML data on the server side is “translated”
into HT'ML before being shipped out to the client. It is also worth noting that once an ontology
is extracted (from either XML or HTML documents), the process of ontology matching remains
unchanged.

1.1 Research background and related work

The study builds upon two existing bodies of research, namely heterogeneous databases and ontol-
ogy design. Each is elaborated below.

1.1.1 Heterogeneous databases

The evolution of organizational computing, from “islands of automation” into enterprise-level sys-
tems, has created the need to homogenize heterogeneous databases. More than ever before, compa-
nies are seeking integrated data that go well beyond a single organizational unit. In addition, a high
percentage of organizational data is supplied by external resources (e.g., the Web and extranets).
Data integration is thus becoming increasingly important for decision support in enterprises [9]. The
growing importance of data integration also implies that databases with heterogeneous schemata
face an ever-greater risk that their data integration process will not effectively manage semantic dif-
ferences. This may result, at least to some degree, in the mismatching of schema elements. Hence,
methods for schema matching should take into account a certain level of uncertainty. Current
research into heterogeneous databases is, however, largely geared towards deterministic semantic
resolution [4, 42, 29, 39, 21], which may not effectively scale in computational environments with
dynamically changing schemata that require a rapid response. In addition, schema descriptions
differ significantly among different domains. It is often said that the next great challenge in the
semantic matching arena is the creation of a generalized set of automatic matching algorithms.
Accordingly, the goal of this research is to propose the use of application semantics for automatic
matching.

Over the past two decades, researchers in both academia and industry have advanced many
ideas for reducing semantic mismatch problems, with the goal of lessening the need for manual
intervention in the matching process. A useful classification of the various solutions proposed can
be found in [44]. Of the categories presented there, we focus on those that deal with the algorithmic
aspect of the problem.

The proposed solutions can be grouped into four main approaches. The first approach recom-
mends adoption of Information Retrieval techniques. Such techniques apply approximate, distance-

based (e.g., edit distance [32] as proposed in [35]) matching techniques, thus overcoming the in-
adequacy of exact, “keyword-based,” matching. This approach is based on the presumption that
attribute names can be mapped using similar techniques. Attribute names are rarely, however,
given in explicit forms that yield good matchings. Furthermore, they need to be complemented
by either a lengthier textual description or an explicit thesaurus, which mandates greater human
intervention in the process. Protege utilizes this method in the PROMPT (formerly SMART) al-
gorithm, a semi-automatic matching algorithm that guides experts through ontology matching and
alignment [19, 20].

A second approach involves the adoption of machine learning algorithms that match attributes
based on the similarity between their associated values. Most efforts in that direction (e.g., GLUE
[14] and Autoplex [6]) adopt some form of a Bayesian classifier [31, 15]. In these cases, mappings
are based on classifications with the greatest posterior probability, given data samples. Another
method, used in the area of natural language processing, involves grammatical inferences [25, 48, 40]:
ie, the inference of a grammar G from a set of examples of a language L(G). Machine learning was
recognized as playing an important role in reasoning about mappings in [33].

Third, several researchers have suggested the use of graph theory techniques to identify simi-
larities among schemata, where attributes are represented in the form of either a tree or a graph
[51, 12, 41]. To give but one example, The TreeMatch algorithm [34] utilizes XML DTD’s tree
structure in evaluating the similarity of leaf nodes by estimating the similarity of their ancestors.

In a fourth approach, matching techniques from the first three groups are combined. Here,
a weighted sum of the output of algorithms in these three categories is used to determine the
similarity of any two schema elements. Cupid [34] and OntoBuilder are two models that support
this hybrid approach. OntoBuilder, however, is the only framework, to the best of our knowledge,
in which application semantics is used as a tool in matching heterogeneous schemata.

Few other systems (MOMIS [5], DIKE [43], and Clio [37], to name a few) aim at resolving
semantic heterogeneity in heterogeneous databases. However, these models assume human support
in the matching process.

1.1.2 Ontology design

The second body of literature we draw upon focuses on ontology design. An ontology is "a spec-
ification of a conceptualization” [26], where conceptualization is an abstract view of the world
represented as a set of objects. The term has been used in different research areas, including phi-
losophy (where it was coined), artificial intelligence, information sciences, knowledge representation,
object modeling, and most recently, eCommerce applications. For our purposes, an ontology can be
described as a set of terms (vocabulary) associated with certain semantics and relationships [46].
Typically, ontologies are represented using a Description Logic [16], where subsumption typifies
the semantic relationship between terms; or Frame Logic [30], where a deductive inference system
provides access to semi-structured data.

The realm of information science has produced an extensive body of literature and practice in

ontology construction, using tools like thesauri, and in terminology rationalization and matching of
different ontologies [2, 49, 53, 56]. Other undertakings, such as the DOGMA project [28, 54], provide
an engineering approach to ontology management. Finally, researchers in the field of knowledge
representation have studied ontology interoperability, resulting in systems such as Chimaera [36],
Protege [20], and an interactive algorithm for ontology merging (Prompt [20]).

The body of research aimed at matching schemata by using ontologies has focused on interactive
methods requiring human intervention, massive at times. In this work, we propose a fully automatic
process. Our approach is based on analyzing model-dependent and application-level semantics to
identify useful ontological constructs, followed by the design of algorithms to utilize these constructs
in automatic schema matching.

The rest of the paper is organized as follows. Section 2 introduces our methodology for generat-
ing appropriate ontological constructs. We exemplify the methodology by introducing ontological
constructs that are suitable for our case study of the Web search. The ontology matching is
described in Section 3, where we detail the hybrid of algorithms we use to match ontologies. Fx-
periments with ontology matching are provided in Section 4. The paper is concluded in Section

5.

An initial report of our methodology was introduced in [38]. The present paper adds a number of
improvements, including (1) extended preprocessing techniques, (2) new algorithms for composition
and precedence matching, and (3) an extended experimental setting.

2 Ontological constructs

The methodology for the process of schema matching is based on ontological analysis of application
classes and the generation of appropriate ontological constructs that may assist in the matching
process. We base the ontological analysis on the work of Bunge [10, 11]. We adopt a conceptual
modeling approach rather than a knowledge representation approach (in the Al sense). While the
latter requires a complete reflection of the modeled reality for an unspecified intelligent task to
be performed by a computerized system in the future [8], the former requires a minimal set of
structures to perform a given task (a Web search in this case).

We categorize ontological constructs into three classes. The first, and the most common to date,
involves the use of syntactic measures to estimate semantic similarity. The second class utilizes
model semantics such as the structural information that is provided by a given data model. The
third class, unique to this research, involves the use of application semantics, those elements of
business reasoning that affect the way concepts are presented to users, their layout and the like.
The capabilities of each class complement those of the others.

To exemplify the methodology, we focus on ontological constructs in the general task of the Web
search. We recognize the limited capabilities of HTML (and for that matter, also XML) in repre-
senting rich ontological constructs, and therefore we have eliminated many important constructs
(e.g., the class structure), simply because they cannot be realistically extracted from the content of

Web pages. Therefore, the ontological analysis of this class of applications yielded a subset of the
ontological constructs provided by Bunge and added a new construct, which we term precedence,
for posing temporal constraints.

We shall now provide a brief description of these ontological constructs. The first two constructs
fall into the category of syntactical constructs. The third can be classified as a model-dependent
semantic construct. Finally, the fourth is an application-dependent semantic construct.

Terms: We extract a set of terms' from a Web page, each of which is associated with one or
more form entries. A term is a combination of the labeling of the entry and the form entry
name. The former is visible to the user and provides a description of the entry content. The
latter is utilized for matching parameters in the data transfer process and therefore resem-
bles the naming conventions for database schemata, including the use of abbreviations and
acronyms. For example, some of the labels we have extracted from the Avis reservation page
are Airport Location Code, Pick-Up Date, Pick-Up Time, Return Date, Return Time,
and Country. FKEntry names include PICKUP_LOCATION_CODE, PICKUP _MONTH, PICKUP_HOUR,
RETURN_MONTH, RETURN_HOUR and COUNTRY_CODE. It is worth noting that in this example, sev-
eral entry names are associated with the same label, e.g., the label Pick-up Date is associated
with PICKUP_MONTH and PICKUP_DAY entries.

Values: Based on Bunge [10], an attribute is a mapping of terms and value-sets into specific
statements. Therefore, we can consider a combination of a term and its associated data en-
try (value) to be an attribute. In certain cases, the value-set that is associated with a term
is constrained using drop lists, check boxes, and radio buttons. For example, the entry labeled
Pick-Up Date is associated with two value-sets: {Day, 1,28 ,31} and { January, February,. . . ,December}.
Clearly, the former is associated with the date of the month and the latter with the month.
Whenever constrained value-sets are present, we can enhance our knowledge of the domain,
since such constraints become valuable when comparing two terms that do not exactly match
through their labels. For example, the label corresponding to Return Date in Alamo’s Web
site is Dropoff Date. Although the labels only partially match (see Section 3 for more de-
tails), and the words Return and Dropoff do not appear to be synonymic in general-purpose
thesauri (dropoff is not even considered a word in English, according to the Oxford English
Dictionary [1]), our matching algorithm matches these terms using their value-sets, since the
term Dropoff Date has a value-set of {(Select), 1,28 ,31}.

It is our belief that designers would prefer constraining field domains as much as possible, to
minimize the effort of writing exception modules. Therefore, it is less likely (although known
to happen occasionally) that a field with a dropdown list in one form will be designed as
a text field in another form. In the case of a small-sized domain, alternative designs may
exist (e.g., AM/PM may be represented as either a dropdown list or radio buttons). Since
the extraction algorithm represents domains in a unified abstract manner, the end result is
independent of the specific form of presentation.

'The choice of words to describe ontological structures in Bunge’s work had to be general enough to cover any
application. We feel that the use of thing, which may be reasonable in a general framework, can be misleading in this
context. Therefore, we have decided to replace it with the more concrete description of term.

Composition: We differentiate atomic terms from composite terms. A composite term is com-
posed of other terms (either atomic or composite). In the Avis reservation Web page, all of
the terms mentioned above are grouped under Rental Pick-Up & Return Information. It
is worth noting that some of these terms are, in themselves, composite terms. For example,
Pick-Up Time is a group of three entries, one for the hour, another for the minutes, and the
third for either AM or PM. Another composite term in the same Web page is titled Airline
Information (with the terms *Airline Name and *Flight #, where the asterisk represents
an optional field). The proposed matching algorithm makes use of composition to overcome
granularity differences. It is noteworthy that there is a rich body of literature on mereology
(e.g., [52, 55]). However, the minimal support of ontological structures in HTML render the
subtleties of it immaterial in this framework.

Precedence: The last construct we consider is the precedence relationship among terms. In any
interactive process, the order in which data are provided may be important. In particular,
data given at an earlier stage may restrict the availability of options for a later entry. For
example, the Avis Web site determines which car groups are available for a given session, using
the information given regarding the pick-up location and time. Therefore, once those entries
are filled in, the information is sent back to the server and the next form is brought up. Such
precedence relationships can usually be identified by the activation of a script, such as (but not
limited to) the one associated with a SUBMIT button. It is worth noting that the precedence
construct rarely appears as part of basic ontology constructs. This can be attributed to the
view of ontologies as static entities whose existence is independent of temporal constraints.
We anticipate that contemporary applications, such as the one presented in this paper, will
need to embed temporal reasoning in ontology construction.

The main difference between the first and second categories on the one hand, and the third
category on the other, is that the equivalence of the construct in the data model is given explicitly
in the former but is only implicit in the latter. In our example, terms are explicitly available as
labels and entry names, and values are explicitly available as value-sets. Composition is explicitly
available in XML definitions through its hierarchical structure.? The precedence construct, on the
other hand, is only implicitly given, through the process of form submission. We argue that by
utilizing implicit constructs, in addition to explicit ones, matching quality can be improved.

3 Ontology matching

In the matching process, two ontologies are merged, refining and generalizing an existing ontology.
We denote by Web resource dictionary the set of terms extracted from a Web resource (typically
composed of several Web pages within a single Web site). Let {v1,vo,...,v,} and {ui,ug,....;up}
be two Web resource dictionaries. The general matching process is conducted in two steps. First,
pair-wise matching yields a similarity measure g, ; for all pairs v; € {vi,v2,...,v,} and u; €
{uy,ug, ..., um }. Next, a subset of the n x m pair-wise matching (dubbed a mapping) is selected

2Forms are given in HTML, which does not have a composition construct per se. Yet, our methodology transforms
the HTML code into an XML definition, to be utilized in the process of schema matching.

as the “best” mapping between the two ontologies. Such a mapping may utilize some variation of
a weighted bipartite graph matching [24], if the required mapping is of a 1 : 1 nature. Finding
a weighted bipartite matching is a well-researched problem, and efficient implementations of it

(having time complexity O ((n + m)3>) can be found in the literature (see, for example, [24]).

For a matching process that yields 1 : n mappings, a simpler algorithm (O (nm)) may be applied,
in which a term v; in a candidate dictionary is mapped into a term u; in a target dictionary if
Povg oy = MAXT<k<m Moy uy - Such an algorithm enables duplicate entries in the candidate dictionary,
yet does not allow the partition of a single value in the target dictionary to several values in the
candidate dictionary. In Section 3.2 we show a simple method for enabling more complex forms of
1:n,n:1, and n: m mappings by normalizing known domains into atomic components.

This process of ontology matching is formalized and discussed in depth in [22]. In particular,
we have shown in [22] that the specific methodology described herein is well suited to identifying
the exact matching (as perceived by a human observer) as the matching with the highest sum (or
average) of similarity measures of the selected term pairs.

This section focuses on the pair-wise matching. We describe four methods for matching, based
on the four ontological constructs presented in Section 2. Section 3.1 introduces term matching.
Value matching is discussed in Section 3.2. Section 3.3 is devoted to composition matching, and
precedence matching is detailed in Section 3.4. We then show how to combine these methods (Sec-
tion 3.5) into an overall similarity measure. We discuss the complexity of all operations separately.
The overall process of ontology matching, in the case of 1 : 1 matching, is dominated by the process
of identifying the best mapping, giving rise to a cubic execution complexity. In the case of a 1 : n
mapping, and assuming the two ontologies are of comparable sizes, the overall complexity becomes
quadratic.

3.1 Term matching

Term matching compares labels and names to identify syntactically similar terms. To achieve better
performance, terms are preprocessed using several techniques originating in IR research. We have
used the following preprocessing techniques in our research.

Capitalization-based separation: Mid-word capitalization (e.g., firstName and PUTime) is in-
terpreted as a concatenation of words (some of which may be acronyms). Therefore, we
separate words based on mid-word capitalization. In the example given above, firstName is
replaced with first Name and PUTime is interpreted as an acronym (PU) followed by Time.

Normalization: All uppercase characters are transformed into lowercase characters. Thus, first
Name is replaced with first name.

Ignorable Character Removal: Characters such as “*’; ¢/, -7, etc. are treated as “noise” and
considered dispensable, and as such are removed from the terms. Hence, after this step, terms
such as *Country and country are considered identical.

De-hyphenation: Labels such as pick-up and pick up are considered identical (e.g., [17]).
Hence, hyphens in labels are removed to improve matching and hyphenated words are merged
(pick-up is replaced with pickup).

Stop Term Removal: Common terms such as ‘a’, ‘to’, ‘in’, and ‘the’ are considered stop terms
(e.g., [18]), and are removed.

Preprocessing is a collection of smaller algorithms (subroutines). These algorithms take a term
as an input and return a transformed term. In almost all cases, the algorithms make a single pass
over a term in order to transform the term as they process, while other cases require a certain
constant number of passes (e.g., Capitalization-based separation requires three passes). Therefore,
given two ontologies of size n and m, the complexity of preprocessing is O (k (n +m)), where k is
the maximal term size (measured in characters).

We have applied two separate methods for term matching based on string comparison as follows:

Word matching: Two terms are matched and the number of common words is identified. The
similarity of two terms ¢1 and t; using word matching (dubbed p,! uy) is defined as the ratio
between the number of common words in ¢; and t; and the total number of different words
in terms t; and to, providing a symmetric measure of the semantic similarity of these two
terms. The more common words the terms share, the more similar they are considered to
be. For example, consider the terms t1=Pickup Location and to=Pick-up location code.
The revised terms after preprocessing are {;=pickup location and f;=pickup location
code. The term similarity, using word matching, is computed as

2 (pickup, location
Mfftz = .(p P -) = 66%
' 3 (pickup, location, code)

Two words wy € t; and wo € ty are considered to be common if at least one of the following
three conditions holds:

Spelling: w; and ws are spelled the same. For example, w; = wy =pickup.

Soundex: Terms are compared and judged to be similar based on the way they sound, rather
than the way they are spelled. Each word is encoded as a four character string, where
similar words share more characters. For example, the word pick is represented as P200
and pickup is represented as P210. Two terms are identified as a match if their soundex
encoding is at least 75% similar and the first letters in each encoding match. In the

example given above, pick is matched with pickup. A comparison of the terms Pickup
2 (pick/pickup, time)
(pick/pickup, up, time)

Time and Pick Up Time yields 5 = 66% match effectiveness using

the soundex method.

Thesaurus: Terms and labels are matched using an ever-expanding thesaurus, based on a
publicly available thesaurus such as WordNet? and extended through user intervention.
Mismatched terms can be presented to the user for manual matching. Every manual
match identified by the user is accepted as a synonym, and expands and enriches the
thesaurus.

3http://www.cogsci.princeton.edu/ wn/

Spelling, soundex, and thesaurus take two terms as input, and return a value as an indicator of
the measure of similarity of the input terms. The process involves breaking down the terms
into words, and checking for their membership in a number of word lists and collections.

Hence, the process complexity is O ((k’ (n+m))2), where n + m is the total number of

terms in both ontologies and k' is the maximal number of words in a term. The quadratic
behavior stems from the need to insert each word into either an intersection or a union list
of words (contained in the two terms). In the worst case, the number of times we scan the
lists constitutes an arithmetic series, the summation of which is w

the quadratic behavior.

, giving rise to

String matching: We find the maximum common substring between two terms whose words
have been concatenated by removing white spaces. The similarity of two terms using string
matching (dubbed ,u;i_M) is computed as the length of the maximum common substring
as a percentage of the length of the longest of the two terms. As an example, consider
the terms airline information and flight airline info, which after concatenating and
removing white spaces become airlineinformation and flightairlineinfo, respectively.

The maximum common substring is airlineinfo, and the effectiveness of the match is
length(airlineinfo) _ 11 61%
length(airlineinfomation) =~ 18 0-

The string matching algorithm basically iterates over the two input terms twice in a nested
fashion the outer loop runs over the entire length of the first term, and the inner loop
roughly inspects for every possible substring match with the second term for every position
in the first string. Therefore, the execution complexity is O(k?), where k is the maximal
length of a term.

Given two ontologies with n and m terms, these methods are applied pair-wise for each of the
n X m possible combinations. For each combination we compare labels and entry names separately.

The overall complexity of the process can be computed as O (k(n+m)) + O <(k' (n+ m))z) +
O(k*) =0 (max ((k’ (n+m))?, k2>> Typically we deal with ontologies of more than 100 terms,

so that n =~ m > k ~ k', and thus the overall processing takes O(n?).

We define a threshold (t7) to identify a reasonable match. Any match with less than ¢! is
discarded. This threshold can be adjusted by the user.

. L L
For each pair, we compute four figures (two for labels, MZK u; and ,ufi’,uj, and two for names,

,u}fq]x and ,ui]x]) We combine the figures into one figure, representing the strength of the match.

Therefore, the similarity measure of a term v; with a term u; is computed as the weighted average

T _ WL WL S,L, S,L W,N , W,N S,N, S,N
lu’vi,u]' =w lu’vi,u]' + w lu’UZ',u_j + w lU"Ui,u]' + w lu’vi,u]‘ (1)
where wW'L, WS, WWN and wSN are positive weights that sum to unity.

Example 1 (Term matching) Consider the terms
Specify Pick Up Location Code * (pickUpCode) and ID for Pick-up Location (pickupID).
According to our convention, a label appears first followed by a name enclosed in parentheses.

10

After preprocessing, the two terms become specify pick up location code (pick up code)
and 1d pickup location (pickup id). Recall that pick sounds like pickup and assume the use
of a thesaurus where code is a synonym of id.

e Label matching:

— Word matching:

|{location, pick/pickup, code/id}|

3
= 2 — 60%
|{specify, pick/pickup, up, location, code/id}| 5 %

— String matching: after removing spaces one has spectfypickuplocationcode and
idpickuplocation as the labels for comparison. The mazimum common substring is

pickuplocation.
length(pickuplocation) 14 56%
length(specifypickuplocationcode) 25 !
e Name matching:
— Word matching:
{pick/pickup, code/id}| 2
= - =66%

{pick/pickup, up, code/id}| 3

— String matching: after removing spaces one has pickupcode and pickupid as the names
for comparison. The maximum common substring is pickup.
length(pickup) 6

=2 =60
length(pickupcode) 10 %

w,

Assuming wWV'E = wSL = 0.4 and w5 = WWN = 0.1, term-based similarity is computed, using

formula 1 above, as follows:

Mgy = 04 % 60% + 0.1 % 56% + 0.4 % 66% + 0.1 % 60% = 62%

3.2 Value matching

Value matching utilizes domain constraints to compute similarity measure among terms. Using
value matching, one can avoid matching terms that are clearly unrelated, such as hours and minutes,
though their syntactic description may be similar (e.g., Pick-Up Time (PICKUP_HOUR) and Pick-Up
Time (PICKUP.MINUTE)).

Fields with select, radio and check box options are processed using their value-sets. Therefore,
different design methods act as no barrier in extracting the actual value sets. Value sets are pre-
processed to result in generic domains. By recognizing separators in well-known data types, such

11

as' /', -7, and ‘.’ in date structures, “:’ in time structures, ‘()’ in telephone numbers, ‘Q’ in e-mail

addresses, and ‘http://’ in URLs, domains can be partitioned into basic components, creating a com-
pound term. The name of each new subterm is constructed as a concatenation of the existing name
and the recognized domain type (e.g., day). For example, the term Pickup Date (pick_date),
which is recognized as a date field based on its domain entries, is further decomposed into three
subterms: Pickup Date (pick_date_day), Pickup Date (pick_date month), and Pickup Date
(pick_date_year). It is worth noting that such preprocessing also affects term matching by gen-
erating additional terms, and therefore is performed prior to term matching,.

The use of domain-based normalization is pivotal in overcoming a major obstacle in schema
matching, involving query rewriting using value partitions and compositions. To illustrate this
point, consider a situation in which an agent is provided with a sample schema and a query over
this schema (e.g., a sample form, filled by a user). Next, the agent is provided with a new schema
(e.g., a new form) and must rewrite the original query to adapt it to the new schema (e.g., must
fill out the new form). Assuming a schema mapping can be found, the agent is still faced with
the problem of how to partition (or concatenate) values so as to rewrite the query. Normalization
becomes handy whenever such partitioning or concatenation is performed on known domains. Once
normalized, atomic values can be mapped, and when joined together according to the new schema,
a new value (processed using existing atomic and composite terms) is generated for the query
rewriting process.

Similarity is calculated as the ratio between the number of common values in the two value sets
and the total number of different values in them. For example, suppose that ¢tj=Return time and
to=Dropoff time with values {10:00am,10:30am,11:00am} and {10:00am,10:15am,10:30am,10:45am,11:00am},
respectively. Preprocessing separates the domains into hour values ({10,11} versus {10,11}), min-
utes values ({00,30} versus {00,15,30,45}), and the value {am}. There is a perfect match in the

hour domain, yet the minutes domains share two values (00 and 30) out of four (00, 15, 30, and

45). Thus, the similarity is calculated as % = 50%. The power of value matching can be fur-

ther highlighted using the case of Dropoff Date in Alamo and Return Date in Avis. These two
terms have associated value sets {(Select),1,2 ,31} and {(Day),1,2,8 ,31} respectively, and thus

their content-based similarity is 3¢ = 94%, which improves significantly over their term similarity

1(Date) _ 8
(_ 33%).

3(Dropoff, Date, Return)

The dominant operations in domain normalization and value matching are the subroutines for
word similarity and string matching. The value matching is performed for pairs of domains, each
represented as a list of terms. We compute word similarity and string matching for all possible
value pairs. Given a maximum length of a value p, and a maximum domain size ¢, then the running

time for value matching is O ((pq)2>.

The domain recognition component can overcome differences of representation within the same
domain. For example, we can apply transformations, such as converting a 24-hours representation
into one of 12 hours. Thus, a domain {10:00, 11:00, 12:00, 13:00} in a 24-hours representa-
tion can be transformed into three domains {1, 10, 11, 12}, {00}, and {am, pm} in a 12-hours
representation.

Value matching is influenced not only by its domain entries as explained above, but also by the

12

Boolean | Float | Integer | Date | Time | Email | URL
Boolean 0.5 0 0 0 0 0 0
Float 0 0.1 0.1 0 0 0 0
Integer 0 0.1 0.2 0 0 0 0
Date 0 0 0 0.3 0 0 0
Time 0 0 0 0 0.3 0 0
Email 0 0 0 0 0 0.4 0
URL 0 0 0 0 0 0 0.4

Table 1: Domain type similarity

term domain type. This technique is adopted from Cupid, and assumes that a similarity of a pair
of domains is assigned with a positive weight 0 < w” < 1. Table 1 shows possible combinations
of domain types and their associated similarity weights. For example, similarity of type wurl is
weighted at 40%, even if their domain entries are not the same. Tuning the parameters depends on
the weight one sets to the impact of domain in term differentiation. Therefore, if one expects only
a few terms with time domain, their relative weight will be high. This tuning can be done either
manually or as a training process. For the latter, the system uses the percentage of terms from a
given domain in the ontologies with which the system has experience to compute w?.

Similarly to term matching in Section 3.1, value matching is applied pair-wise to each of the
n X m possible combinations and any match below the threshold is discarded. Given a pair, v; and
uj, we compute the similarities of their domain entries as F‘i—,uj- The overall matching similarity is
computed as the weighted average

\%4 D E FE
Py =W W fy, (2)

D D

where w? is taken from Table 1 and w? =1 — wP.

Example 2 (Value matching) Consider the following two terms, Drop-off Date (drop_date)
with a domain {January 2002 ,..., December 2002} and Return Date (return_date) with a domain
{Aug-2002 ,..., Dec-2002, Jan-2003, ..., Jul-2003}. After applying the domain recognition technique
both terms are categorized as Date and their domain similarity is weighted at ,ufi’uj = 0.3, according
to Table 1. Domain decomposition will subdivide both terms into three fields:

e Day: Since no day is specified in the domain entries, the first of each month is arbitrarily as-
sumed, creating two subterms Drop-off Date (drop_date_day) and Return Date (return_date_day),
both with a single value domain, {1}. The domain matching results in a 100% similarity.

o Month: Two subterms are created, Drop-off Date (drop_date_month) and Return Date
(return_date_month), both with a domain {Jan, ..., Dec} (note the normalization of month
representation). The domain matching results in a 100% similarity.

e Year: Two subterms are created, Drop-off Date (drop_date_year) with a domain {2002}
and Return Date (return_date_month) with a domain {2002,2003}. When comparing both
domains, we obtain a 50% similarity (only one value is common to both domains).

13

The overall value similarity for each of the three terms, using Formula 2, is 0.3 4+ 0.7 * 100% =
100% for the day and month and 0.3 + 0.7 x 50% = 65% for the year. O

Given two terms, v; and u;, we compute a linguistic similarity ,u{}z_’uj as a weighted average of
the term and value similarity measures. That is:

T, T v,V
L w }uvi,uj +w :uvi,uj

,uvi,uj = wT + VvV (3)

where w! and w" are positive weights such that w?! +w" < 1. Linguistic similarity is the basis for
computing composition and precedence matching, as will be discussed shortly. It is worth noting
that w" = 0 whenever there are no constraints associated with the matched terms. Thus, in a
form setting, we assign w" = 0 whenever both terms are associated with a text field. The uﬁhuj
are stored in an n x m matrix (Mg), to be used in composition and precedence similarity.

3.3 Composition matching

Composition in Web forms is constructed using three methods, namely multiple term association,
name similarity, and domain normalization. Multiple term association refers to the association
of multiple terms with the same label, where all terms are named and grouped under that la-
bel. Name similarity groups entry labels that share identical prefixes. For example, the terms
Pick-Up Location Code, Pick-Up Date, and Pick-Up Time in the Avis Web site are grouped
under Pick-Up. Domain normalization was discussed in Section 3.2 and involves the splitting of
a term into subterms through recognition of known domains (such as day and time). Other tech-
niques may be employed for determining composition. For example, one may use various framing
constructs of HTML, such as color alterations and headings, to identify composition. Using such
techniques, one may associate terms (such as Pick-Up Location Code) with entry-less labels (such
as Rental Pick-Up & Return Information).

To avoid ambiguity at an intra-dictionary level, one needs to ensure term uniqueness. We
ensure term uniqueness by concatenating labels with entry names, to form label (name) as a term.
As an example, consider the composed term Pick-Up Time. The terms in this composed term
are named Pick-Up Time (PICKUP_HOUR), Pick-Up Time (PICKUP MINUTE), and Pick-Up Time
(PICKUP_AM_PM).

Given a Web resource dictionary D, we define a composition graph of D to be a directed graph
G = (V,E) such that V = D and (u,v) € F if u belongs to the group v. It is worth noting that
G is not necessarily a tree, since the various grouping methods may associate the same node with
different ancestors. The following proposition ensures a weaker property of G.

Proposition 1 Let G = (V, E) be a composition graph. G is a directed acyclic graph.

We next detail a graph-based matching algorithm. The algorithm is based on a technique we
dub graph pivoting, as follows. When matching two terms, we consider each of them to be a pivot

14

within its own ontology, thus partitioning the graph into semantically related subgraphs. The
semantics of pivoting is taken from the ontological analysis. The algorithm receives as an input two
composition graphs, serving as candidate and target ontologies, and a matrix of pair-wise linguistic
similarity measures, as discussed in Section 3.2. The output is a matrix of pair-wise composition
similarity measures M(, = #g,u]—-

Given two terms v; and wu;, in the candidate and target ontologies, respectively, we partition
each ontology into three parts, namely siblings, ancestors, and unrelated terms. Siblings are those
nodes that share a parent with v; (or u; in its respective ontology). Ancestors are those nodes on
a path to v; (and u; respectively). All other nodes are considered to be unrelated. The algorithm
attempts to match, using linguistic matching, siblings with siblings and ancestors with ancestors
(regardless of the relationships among the ancestors). The similarity of these two “subontologies”
is combined as ,u%;,uj using weights, just as for term and value matching. Therefore, given a pair
v; and u;, we compute their subontology similarities ufl_ g (for siblings) and MvRi,uj (for ancestors).
The overall matching similarity is computed as the weighted average

C _ ., B, B R, R
lu’vi,u]' =w Mvi,uj +(.U lu’vi,u]‘ (4)

where w? and w? are positive weights that sum to unity. As a default, each similarity measure
contributes equally to the composition matching similarity. Another alternative gives greater weight
to larger ontologies, thus decreasing error rates.

Algorithm 1 (Composition matching) Input: G', G", and Mg
Output: M[, = (,ug;uj)
01. Initialize Mg using m;; = ,ugwj

02. for each term u eV’
03. for each term v e V"

04. ,ufZU = getAncestorsConfidence (u,v)
05. pB, = getSiblingsConfidence (u,v)
06 ¢ _ B,B R, R

° /l‘u,v w ILL’U,’LL +w MU,U/
07. MG’ [’U,] [U] = ,uiv
08. end for
09. end for

10. return Mg |u][v]

The getAncestorsConfidence and getSiblingsConfidence functions produce the best map-
ping between two subontologies, as discussed at the beginning of Section 3. The match is performed
according to the matching cardinality constraints (either 1:1 or 1 : n).

Example 3 (Composition matching) Figure 1.a provides the mapping with the highest sim-
ilarity measure between two ontologies, using the linguistic matching ,ugl_’uj of Formula 3. It is

15

1
|Q input: Person {persan) I——_—— ————ﬂm input: Person {persan |

0815

51 input: First Narme (firsttarme) I——_—_——HD input: First Name fhame?

0.833
51 input: Last Marme fastMames | {8 input: Last Mare (narme)

51 input SSM {ssn) | [&3 input: Social (social
a) Using term & value matching

|E| input: Person (persam I__———— 1 _—————'D input: Person (persam |

&7 input: First Mame (firstharme) 0.867 _—_—_i;l input: First Mame (fharmel
0.av1

& input: Last Mame (astMame) I———ﬁm input: Last Mame {Iname)
57 input: SSM (ssn) [0483 B3 input Social (social

b) Using composition matching

Figure 1: Composition matching example

noteworthy that the terms SSN (ssn) and Social (social) are not considered a match, unless we
specify them as synonyms in a thesaurus. The composition matching algorithm, however, matches
both terms based on the mappings of their ancestors and siblings. To illustrate how the algorithm
works, assume that Mg s given by the values in Figure 1.a, so for example,
Mg[FirstName(fname)|[FirstName(firstName)|] = 81.5%.

For w =SSN (ssn), ancestors(u) = {Person (person)} and siblings(u) = {First Name
(firstName), Last Name (lastName)}. For v =Social (social), ancestors(v) = {Person
(person)} and siblings(v) = {First Name (fname), Last Name (lname)}. Therefore, pli, =
100% and ,u{iv =0.5x0.815+0.5 x 0.833 = 82.4%. Assuming equal weights for ancestors (W) and
siblings (w®), the overall matching similarity can be computed, using Formula 4, to be ,uiv = 91.2%.
The similarity of SSN (ssn) and Social (social), as appears in Figure 1.b, combines the lin-
guistic similarity measure (which is close to zero) and ugv (91.2%) O

The algorithm considers all nxm term combinations. For each one, it computes similarities twice
(once for ancestors and once for siblings). Using Proposition 1, the extraction of the subontologies
is performed in O(n 4+ m). Therefore, when applying a 1 : 1 matching, composition matching runs

at O (nm (n+ m)3) ~ O (n5) for ontologies of similar size. For 1 : n matching, the algorithm runs

at O (n2m2) ~ 0 (n4) for ontologies of similar size.

3.4 Precedence matching

Let u; and u; be atomic terms in a Web resource dictionary. wu; precedes u; if one of the following
two conditions is satisfied:

1. u; and u; are associated with the same Web page and wu; physically precedes u; in the page.

16

2. u; and u; are associated with two separate Web pages, U; and U, respectively, and U; is
presented to the user before Uj.

Evaluating the first condition is easily achieved when the page is extracted into a DOM tree (short
for Document Object Model), a W3C standard that can be used in a fairly straightforward manner
to identify form elements, labels, and input elements. The properties of the precedence relation are
summarized in the following proposition.

Proposition 2 The precedence relation is irreflexive, antisymmetric, and transitive.

The precedence relationship, as presented in this paper, serves as a crude estimation of the
actual time constraints of a business process. For example, while it is clear that car rental companies
would be likely to inquire about pick-up information before return information, there is no reason
why either shipping address or invoice address should take precedence in a purchase order. The
crudeness of this method stems from the minimal information provided by Web pages regarding
the true sequence of terms. Web server cooperation would enable a deeper analysis, including the
analysis of scripts, to refine term dependency. One outcome of the relationship’s crude definition
is the identification of many false positives by the algorithm (i.e., many false good matches).

Precedence matching works similarly to composition matching using graph pivoting. Given
an atomic term v; in a Web resource dictionary with n terms {v1,vs,...,v, }, we can compute the
following two sets:

e precede(v;) = {vj|v; precedes v;}

e succeed(v;) = {v;|v; precedes v;}

It is worth noting that, following Proposition 2, precede(v;)Nsucceed(v;) = &. Given two terms,
v and u, from two Web resource dictionaries, we consider u and v to be pivots within their own
ontologies. Therefore, we compute the similarity measure of matching precede(v) with precede(u)
(Hou), and succeed(v) with succeed(u) (i,,). This computation is based on a linguistic similarity
measure. Presumably, terms will tend to match better if both those that precede them and those
that succeed them do so.

Given a pair, v; and uj, we compute their subontology similarities ,u;;’uj and ,uv_;uj. The overall
matching similarity is computed as the weighted average

P — — —
Mvi,uj- =w sz-,uj tw :uvi,uj (5)
where w™ and w™ are positive weights that sum to unity. Again, as a default, each similarity

measure contributes equally to the composition matching similarity.

Example 4 (Precedence matching) Figure 2.a illustrates the matching of terms between two
ontologies for car-rental reservation application, after applying linguistic matching. The candidate

17

|E| Resarvation O |E| Resamvation O

1
571 text: Pickup Location ¢pickuplLocation) Fﬂ_—_—_ﬁlp text: Pickup Location (pickuplLocation)

&1 select Time dirne)

5] select Pickup Time (pickupTime)

& text Dropoff Location (dropofiLocation) &7 text: Dropoff Location (dropofflocati...

&1 select Dropoff Time (dropofTime) | 50 select Time Mimed)

a) Using term & walue matching

1;‘ Reseration |E‘ Reservation §
0.6249

51 text: Pickup Location (pickupLDcatiﬂn)f“—’_—_—E_“ﬂD text: Pickup Location {pickupLocation)
51 zelect Pickup Time (pickupTirme) 0548 & select Time ftime1)
&7 text: Dropoff Location (dropofiLocatio... 0598 &1 tent: Dropoff Location (dropoffocation)

51 select Dropof Time (dropofTime) 0654 &1 select Time fime)

b) Using precedence matching

Figure 2: Precedence matching example

ontology (on the right) distinguishes implicitly between pick-up and drop-off times, based on their
proximity to the Pickup Location (pickupLocation) and Droppoff Location (dropoffLocation).
Using linguistic matching, we can separate Pickup Location from Dropoff Location. However,

the time terms (both have domain {12:00am, 11:00pm}) cannot be differentiated. The prece-
dence matching algorithm matches both terms correctly, based on the presentation order of those
terms within the HTML page. For ease of presentation, we have refrained from normalizing the
time attributes.

The following sets were identified for vi =Time (timel) and vy =Time (time2):

precede(vy) = {Pickup Location (pickupLocation)}

precede(vy) = {Pickup Location (pickupLocation), Time (timel),
Dropoff Location (dropoffLocation)}

succeed(v1) = {Dropoff Location (dropoffLocation), Time (time2)}
succeed(ve) = {}

The following sets were identified for u; =Pickup Time (pickupTime) and us =dropoffTime
(dropoffTime):

precede(uy) = {Pickup Location (pickupLocation)}

precede(us) = {Pickup Location (pickupLocation), PickupTime (pickupTime),
Dropoff Location (dropoffLocation)}

succeed(uy) = {Dropoff Location (dropoffLocation), Droppoff Time (dropofftime)}
succeed(ug) = {}

The precedence similarity measures, using the time terms as pivots and assuming equal weights
to precede and succeed similarity measures, are given in the following table:

18

— — P
|| l’va“ I'Lv,u uv,u

v1 =Time (timel) and

uy =Pickup Time (pickupTime) 1 % = 0.86 W =0.93

v1 =Time (timel) and
uz =Dropoff Time (dropoffTime) | 1 0 120540405 _) 5

0.5+0.5
va =Time (time2) and
w1 =Pickup Time (pickupTime) L;’O'S = 0.5 0 W =0.25
va =Time (time2) and
uz =Dropoff Time (dropoffTime) % =090 | 1 W =0.95

The algorithm chooses the match with mazximum similarity, thus matching Time (timel) with
Pickup Time (pickupTime) and Time (time2) with Dropoff Time (dropoffTime). The combi-
nation of linguistic matching with precedence matching produces the overall matching similarity as
shown in Figure 2.b. (

<2l Delta Air Lines - Travel, Airfare and Airline T... [Z”E|g|
File: Edit Wisa Favorites Tools Help .','

<N AA.com - Microsoft Internet Explorer
»

G Back - e - x‘] n:“l '\J ™) search File Edit View Faworites Tools Help :,'

— s » — »
Back -) » : 4) Search
Address |@ http:f fese, delta, comfhomne findesx. jsp ~ | Go G = L Lol |
Round-trip Reservations @@ | 2odress & hetpiitunna. aa. comy] ~| €
Dneematlons Make a Reservation -~

Leawving fram Departure date Time * Round Trip { OneWfay hdulti Ciby epartureTime

| |@1 |Sep V||El? vl@ |1Uam v| From: City or Airport Code Departure Date:

Going to Return date Time [| |AUQ | [21 ~]| [maming ~]

To: City or Airport Code Return Date

| | |SE|:| v | [7 v [moming ~]

Number of Search { Fare

[1 % adurs M2z Options

Fassengers: by: (% Schedule @
[0~ |chitdran " mAdvantage AETs =ad

< >
&) 0 Internst

| &0 [sep (14 %@ [10em]

Fassengers Freferred cabin

|1 v| |ECDany,|"CDElCh V| @

Fricing - leave unchedied to find lowest fares

[Unrestricted

-

< >
@ & Internet I|

Figure 3: AA versus Delta

Example 4 is a simplification of a scenario we have identified in the Delta airline reservation
system (see Figure 3). The form contains two time fields, one for departure and the other for
return. Due to bad design (or designer’s error), the departure time entry is named dept_time 1
while return time is named dept_time 2. Both terms carry an identical label, Time, since the
context can be easily determined (by a human observer of course) from the positioning of the time
entry with respect to the date entry. For the American Airlines reservation system (Figure 3), the
two time fields of the latter were not labeled at all (counting on the proximity matching capabilities
of an intelligent human being), and therefore were assigned, using composition by multiple term
association, with the label Departure Date and Return Date. The fields were assigned the names
departureTime and returnTime. Term matching would prefer matching both Time (dept_time_1)
and Time (dept_time_2) of Delta with Return Date(returnTime) of American Airlines (note that
‘dept’ and ‘departure’ do not match, neither as words nor as substrings). Value matching cannot
differentiate the four possible combinations. Using precedence matching, the two time entries were
correctly mapped.

The complexity analysis of precedence matching is similar to that of composition matching.
Precedence matching considers all n x m term combinations. For each it computes similarity twice

19

(matching the precede subontologies and the succeed subontologies). Therefore, when applying
a 1 : 1 matching, composition matching runs at O (n5) for ontologies of similar size. For 1 : n
matching, the algorithm runs at O (n4) for ontologies of similar size.

3.5 Computing pair-wise similarities

Given two terms, v and u, and four similarity measures, ,uvT’u, ,uX ws ,ugu, and ,ui 4 We can compute
the overall similarity of v and u as the weighted average

L T +oV +a%+oP >0 (6)

T Al A e T el T
s u; .
’ 0 otherwise

where @7, @V, @¢, and @ are computed from the set {wT,wV,wC,wP} of positive weights that

sum to unity, as follows:

X X b'e
X oL e > e copyop
“ { 0 otherwise X E{T V.G P}
tX (for X € {T,V,C, P}) is the assigned threshold for the specific similarity measure. In addition,

the following constraints are applied:

e As noted in Section 3.2, w¥ = 0 whenever the terms are not constrained. This is the case
whenever both terms are not atomic or whenever both terms are associated with a text field.

e Due to many false negatives and false positives in computing ,qu’U and ,ufi «» We consider term
and value similarity measures to be primary measures. That is, we do not move on to compute
uvc’u and ,ui . for terms that do not pass term and value thresholds. This constraint also assists
in reducing the overall complexity of the matching process, since linguistic similarity is much
cheaper to compute than composition and precedence similarity.

In Section 3.3 and Section 3.4 we have computed the similarity of “subontologies” using linguistic
similarity matching only. This computation can be easily derived from Formula 6 by setting w® =
P
w' = 0.

4 Experiments

We are now ready to report our experiences with schema matching. Our experiments are aimed at
measuring the effectiveness of the proposed algorithms for automatic ontology matching. We use
OntoBuilder to measure effectiveness. In what follows, we first present the experimental method-
ology and then the experimental results.

20

4.1 Experimental methodology
4.1.1 OntoBuilder

We developed a tool that extracts ontologies from Web applications and maps ontologies to answer
user queries against data sources in the same domain. The input to the system is an HI'ML page
representing the Web site main page. The whole process is divided into four phases. In phase 1,
the HTML page is parsed using a library for HTML/XML documents, and produces a DOM tree
representing the page. The DOM tree is then used to identify all the form elements and their labels
in phase 2. In phase 3, the system produces an initial version of the target and candidate ontologies.
Later, in phase 4, the ontologies are matched to produce a mapping using the algorithms presented
in Section 3.

The label identification algorithm implemented in OntoBuilder is very powerful, being able to
identify a high percentage of elements and their associated labels. On average, the label identifi-
cation algorithm achieves more than 90% effectiveness. These results do not include hidden fields,
submits, resets and buttons in general, and images. Although these elements are used in the ontol-
ogy extraction, they usually do not have an associated label (e.g., hidden fields are not even shown
to the user).

OntoBuilder supports an array of matching and filtering algorithms, as discussed above. Ad-
ditional algorithms can be implemented and added to the tool as plug-ins. All algorithms are
extensions of an abstract algorithm interface. The interface describes the signature (methods and
functions) that matching algorithms must implement in order to be used in the tool. Algorithm
parameters (such as weights) are specified using an XML configuration file which can be edited
using a user-friendly interface. OntoBuilder was developed using Java, and runs under the Java 2
JDK version 1.4 or greater. OntoBuilder also provides an applet version with the same features of
the standalone version and the added functionality that allows users to access and use it within a
Web client.

OntoBuilder is available at http://ie.technion.ac.il/OntoBuilder.

4.1.2 Data

For our experiments, we selected 104 Web forms from 14 different domains, namely flight reserva-
tions, book stores, car rentals, cosmetics, dating and matchmaking, accommodation portals, hotel
Web sites, job hunting, moving, news, search engines, ticket booths, vacation timesharing, and
Web mail. We matched the Web forms in pairs, where pairs were taken from the same domain. In
our experiments, we used 1 : n mapping. This means that while each concept from the candidate
ontology could be paired to no more than one concept from the target ontology, several concepts
from the target ontology could be mapped to the same candidate concept. 1 : n mappings result
in asymmetric mappings. Therefore, for each pair we ran two sets of experiments, exchanging the
roles of candidate and target ontologies.

21

All experiments were conducted using OntoBuilder (see Section 7?). We tested six different
variations of OntoBuilder algorithms, namely term, value, linguistic (term+value), composition,
precedence, and combined (linguistic+composition+precedence). In most cases, we ran all six al-
gorithms on each Web form pair, varying the threshold level from 0% to 85% for each experiment. A
0% threshold obliges an algorithm to find a match for all concepts in the target ontology, no matter
how poor the match is. For example, in the Hertz/Alamo case, Country: (DROP_OFF_COUNTRY)
was incorrectly matched at a threshold of 0% with (ADDITIONALDRIVERSCOUNT) using term match-
ing that managed to find a random match (COUNT). The number of pairs to be tested for each
algorithm ranged from 90 to 104.

For each Web pair, a human assessor determined whether a mapping was possible, and if so
what that mapping was.

4.1.3 Evaluation methodology

We evaluate the performance of the various algorithms using three metrics, namely recall, precision,

and error. Recall is computed as the ratio between the number of matched terms and the overall

number of identified terms. That is, given n attributes in the target Web resource dictionary, of

which m < n are matched, recall is computed as
r="

n

Recall is affected by the chosen threshold, where a threshold of 0% forces all attributes to be

matched, yielding a recall of 100%. Recall typically falls as the threshold rises.

Precision is computed as the ratio between the number of correctly matched terms and the total
number of matched terms. In our experiments, we used two variants of precision. The first variant
takes into account all terms of both ontologies, whether or not they can be matched, as determined
by the human assessor. The second variant considers only those attributes that can be matched
in the assessor’s judgment. Formally, Let V' = {v1,v9,...,v,} be a target Web resource dictionary
and let U be a candidate Web resource dictionary. U partitions V into two subsets V7 and V5, such
that V] is the set of all matchable terms and V5 contains all those terms that cannot be matched
with any term in U. Let M be a set of cardinality m, representing the set of all attributes in V
that were matched by the algorithm. General precision (Pg) is computed as

_ oM
a m

Pg

and precision with respect to target (Pr) is computed as

Vi N M|
Pr=——
A

Ps measures, among other things, the ability of an algorithm to combat domain heterogeneity,
while Pr ignores domain heterogeneity, focusing on terminology and structural heterogeneity only.

Typically, a rise in precision comes at the expense of recall. Therefore, the selection of a
threshold must aim at balancing the number of matched terms with the number of correctly

22

matched terms. In our experiments, we also used a combined measure as suggested in [45]. For
a precision value P, a recall value R, and an importance measure b, the combined measure E is
computed to be
(1+b*)PR

b’P+R
FE represents the amount of error in the model. Therefore, a low E value indicates a higher combined
value of P and R. b balances the importance of P and R, where for b = 0.5 (the value of choice in
our experiments), precision bears more weight. It is worth noting that F is a generalization of the
more well known F-value. F-value is defined to be

_ 2PR
 P+R

E=1-

Therefore, by setting b = 1, we get £ = 1 — F. Like the measure of precision, the error measure
comes in two flavors, Fg and Ep.

4.2 Experimental results

4.2.1 Recall

1 .OOW_'_'_"\
e
0.60 \\.\\\‘ o

3o < ~

© 030 \—Qv:\:\\\‘ A
0.20 o
0_00 T T T T T T T T T T T T A A hd A 1
O 1B Y. L AN L MO UL &« LV v U © v N~ 1 0 W
S S = oN3NNSITows Q3N o X
o o o o o o o o o
Threshold

—0— Cupid —— Term —— Precedence —%—Combined

Figure 4: Recall vs. Threshold

We examine the recall of the six algorithms by using threshold levels of 0%, 5%, 10%,..., 85%.
Figure 4 provides a representative sample of three of the seven algorithms. As expected, the higher
the threshold, the lower the recall measure. All algorithms show a graceful decline. Clearly, different
algorithms require different thresholds to obtain a reasonable level of recall. To achieve an 80%
recall, the combined algorithm needs to maintain a somewhat low threshold of about 13%. This
observation should be kept in mind when performing precision analysis (see below).

23

4.2.2 Precision

In Section 4.1.3 we differentiated between two types of precision. Pg is computed out of all terms,
while Py is computed out of matchable terms only. In this section we examine each measure
separately, then compare them.

Figure 5:
1.00
0.90
0.80
0.70
0.60
o 0.50
a! 040
0.30
020
0.10 \’\%@*
0.00 T T T T T T T T T T T T T T T T 1
O 1N ... N IO O O <& VL UL B © U M~ I 0 W
© O . o N g ™M g ¥ o o © g N o X
o o o o o o o o o
Threshold
—o— Cupid ——Term —a— Precedence —<— Combined —e— Value

Figure 6: Pg vs. Threshold

Figure 6 provides a pictorial comparison of four algorithms with respect to Pg. Term outper-
forms the other algorithms for almost all thresholds. These results indicate that in the types of
ontologies we have extracted from the Web, syntactical analysis carries more weight than semantic
analysis (such as structural information). As further evidence for this conclusion, one may con-
sider the performance of the Precedence algorithm, which measures significantly lower in precision
than Term. Precedence produces many false positive errors, suggesting that such an algorithm is
put to better use in refuting possible matches than in supporting them. It is also interesting to
note the reasonable performance of the Value algorithm. What is not evident from this graph is
that Value performance varies much more than that of other algorithms. Clearly, for ontologies
with many different data types Value has good prediction capabilities (much better than Term),
while for onotologies in which many terms share the same domain, Value will find it much harder
to predict correct mappings. Finally, the performance of the Combined algorithm is affected by
the performance of the four algorithms that construct it, namely Term, Value, Composition, and
Precedence. Up to a threshold of 0.3 its performance is similar to that of the Term algorithm. For
higher thresholds, its performance rapidly deteriorates under the impact of the Composition and
Precedence algorithms.

The analysis of Pp is based on Figure 8. The overall patterns we have noticed in Figure 6
repeat here as well, only with a higher precision level. The dominance of Term is more visible here,

24

Figure 7:

1.00

0.901

0.80 <

0.70 %'\
0.60 -—

-—
= 0.50 X A)
n_l 040 /‘){ 4

0.30 ﬂ/‘/ \, \
0.10 RN %E
0.00 T T T T T T T T T T T T T T T T
O WL L N WMWY S VLW O VNI O W
© O .. o N o @M o ¥ oW o © o o ®
o o o o o o o o o
Threshold
—o— Cupid ——Term —a— Precedence —%— Combined —e— Value

Figure 8: Pr vs. Threshold

with better performance for thresholds in [0.05,0.75]. An interesting phenomenon is the ability of
the Value algorithm to outperform all other algorithms for a 0 threshold (which means a recall of
100%), with an average precision of 90%.

4.2.3 EFError

We next turn our attention to the Error measure. Recall that the Error measure provides a
combined measure of recall and precision, given a specific ratio of importance between them. In
our case, we have set b = 0.5, giving more importance to precision than to recall. The lower the
Error measure, the better the combined impact of an algorithm. Figure 10 presents the change
in error levels (using Pg) with a rising or falling threshold. For low thresholds (up to 0.3), Term
performs slightly better. For higher threshold values, the combined algorithm performs better than
its counterparts.

Figure 12 provides a similar result for the Fp measure. Term outperforms the other algorithms
for a threshold of up to 0.4. For higher thresholds, the combined algorithm outperforms other
algorithms, with the Precedence algorithm achieving similar error levels for thresholds of 0.8 and
0.85.

25

Figure 9:

1.00
0.90

0'8015‘=‘=‘>‘_‘—‘\A—A——‘—‘\A
0.70
0.60 \

(DI 0.50 \
w 0.40
0.30
0.20 N \
0.10 ﬂ\, &“'F!
000 T T T T T T T T T T T T T T T T 1
O 1N . LN O O U < L B B © U M~ K 0 W
© © v. o N o Qo X o o 9o N o X
o o o o o o o o o
Threshold

—o— Cupid —o— Term —— Precedence —<—Combined

Figure 10: Eg vs. Threshold

5 Concluding remarks

In this paper, we have proposed the use of application semantics to enhance the process of ontology
matching. Application semantics involves those elements of business reasoning that affect the
way in which concepts are presented to users, for example via their layout. In particular, we
have introduced the precedence ontological construct, in which temporal constraints determine
the sequence of concepts presented to the user. While the paper has suggested the extraction of
ontologies from HTML forms, we consider the use of ontologies to be essential for the broad area of
Web search. Current search engines (in particular Google) have applied IR techniques in matching
documents with user queries. We believe that the addition of structures such as composition and
precedence to search engines, whenever suitable, would enhance the precision of the search process.
We leave this as an open research question. In particular, we will explore the use of additional
ontology structures to improve the effectiveness of the matching process.

It is our conjecture that using application semantics as a means for semantic reconciliation can
be generalized beyond its application to HTML Web forms. For example, the relational model has
little ability to represent application semantic means such as precedence. However, many relational
databases are interfaced nowadays through the use of HTML forms, for which we have shown in
this paper that precedence increases the success of semantic reconciliation. Also, analysis of typical
queries for a given application reveals information regarding the typical use of concepts, which can
be further utilized in the semantic reconciliation process. We plan on investigating the methods
illustrated above in future research.

While precedence has proven itself in certain instances, a good algorithm is still needed to

26

Figure 11:

1.00
0.90
0.80
0.70 ¢t

0.60 A
0.50

-
w' 0.40 I
0.30W

0.20 P?’ >

0.10 <~ ‘/_\; ﬁ
0.00

a g

T T T T T T T T T T T T T T T T 1

o 1O Y. OO N OO M O < O L B O U N O 0 W

© O . o Noc Mo ¥ o oo © o N o X

o o o o o o o o o
Threshold

—o— Cupid —o— Term —— Precedence —<—Combined

Figure 12: Ep vs. Threshold

extract this knowledge and put it to use, as our experiments show. The conceptual framework
we provide, however, opens the door to more application-semantic concepts to be introduced and
used in the ontology matching process. Another observation derived from our experiments is that
combining matching algorithms via weighted average (or sum) methods may be counterproductive.
In ... we pursue other alternatives to this approach, based on preference theory.

We aim at continually improving the proposed algorithms. For example, the use of a linear
algorithm for finding the maximal substrings and superstrings of two given strings was suggested
in the context of bioinformatics [47]. Embedding a variation of this algorithm in our system may
reduce the complexity of string matching. Finally, we intend to research in depth the problem of
complex query rewriting in a heterogeneous schemata setting, using data types identification and
domain normalization. The method proposed in Section 3.2 serves as a promising starting point,
yet a more thorough methodology is yet to be developed.

Research complementing the present paper provides sufficient conditions for matching algo-
rithms to identify exact mappings, as conceived by an expert. This work is reported in [3, 23].

Acknowledgement

Our thanks is given to Louiga Raschid and AnHai Doan for useful discussions. This research was
partially supported by the Fund for the Promotion of Research at the Technion (191-496) and
by the Fund of the Vice President for Research at the Technion (191-507). Giovanni Modica and
Hasan Jamil’s research was partially supported by National Science Foundation EPSCoR, Grants

27

(EPS-0082979 and EPS-0132618), a USDA-ARS Cooperative Agreement grant (CRIS-6406-21220-
005-15S) and a Southwest Mississippi Resource Conservation & Development Grant (01050412).
Avigdor Gal’s research was partially supported by the IBM Faculty Award (2002). We thank
Ido Peled, Haggai Roitman, and the class of “Information Systems and Knowledge Engineering
Seminar,” Fall Semester, 2002, for their assistance in collecting and analyzing the data.

References

1]
2]

3]

Concise Oxford Dictionary. Oxford Univ. Press, 8 edition, 1991.

J. Aitchison, A. Gilchrist, and D. Bawden. Thesaurus construction and use: a practical manual.
Aslib, London, third edition, 1997.

A. Anaby-Tavor, A. Gal, and A. Trombetta. Evaluating matching algorithms: the mono-
tonicity principle. In S. Kambhampati and Craig A. Knoblock, editors, Proceedings of the
1JCAI-03 Workshop on Information Integration on the Web, pages 47-52, Acapulco, Mexico,
August 2003.

Y. Arens, C.A. Knoblock, and W. Shen. Query reformulation for dynamic information inte-
gration. In G. Wiederhold, editor, Intelligent Integration of Information, pages 11-42. Kluwer
Academic Publishers, 1996.

S. Bergamaschi, S. Castano, M. Vincini, and D. Beneventano. Semantic integration of hetero-
geneous information sources. Data € Knowledge Engineering, 36(3), 2001.

J. Berlin and A. Motro. Autoplex: Automated discovery of content for virtual databases.
In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors, Cooperative Information
Systems, 9th International Conference, CooplS 2001, Trento, Italy, September 5-7, 2001, Pro-
ceedings, volume 2172 of Lecture Notes in Computer Science, pages 108-122. Springer, 2001.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific American, May
2001.

A. Borgida. Knowledge representation, semantic data modelling: What’s the difference? In
Proceedings of the 9th International Conference on Entity-Relationship Approach (ER’90),
pages 1-2, Lausanne, Switzerland, 1990.

M. Brodie. The grand challenge in information technology and the illusion of validity. Keynote
lecture at the International Federated Conference ‘On the Move to Meaningful Internet Systems
and Ubiquitous Computing’, 2002.

M. Bunge. Treatise on Basic Philosophy: Vol. 3: Ontology I: The Furniture of the World. D.
Reidel Publishing Co., Inc., New York, NY, 1977.

M. Bunge. Treatise on Basic Philosophy: Vol. 4: Ontology II: A World of Systems. D. Reidel
Publishing Co., Inc., New York, NY, 1979.

S. Castano, V. De Antonellis, M.G. Fugini, and B. Pernici. Conceptual schema analysis:

Techniques and applications. ACM Transactions on Database Systems (TODS), 23(3):286—
332, 1998.

B. Convent. Unsolvable problems related to the view integration approach. In Proceedings of
the International Conference on Database Theory (ICDT), Rome, Italy, September 1986. In

Computer Science, Vol. 243, G. Goos and J. Hartmanis, Eds. Springer-Verlag, New York, pp.
141-156.

28

[14]

[18]

[19]

[20]

A. Doan, P. Domingos, and A.Y. Halevy. Reconciling schemas of disparate data sources:
A machine-learning approach. In Walid G. Aref, editor, Proceedings of the ACM-SIGMOD
conference on Management of Data (SIGMOD), Santa Barbara, California, May 2001. ACM
Press.

P. Domingos and M. Pazzani. Conditions for the optimality of the simple bayesian classifier.

In Proc. ICML, pages 105-112, 1996.

F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logic. In
G. Brewka, editor, Principles on Knowledge Representation, Studies in Logic, Languages and
Information, pages 193-238. CSLI Publications, 1996.

C. Fox. Lexical analysis and stoplists. In W.B. Frakes and R. Baeza-Yates, editors, Information

Retrieval: Data Structures € Algorithms, pages 102-130. Prentice Hall, Englewood Cliffs, N.J
07632, 1992.

W. Francis and H. Kucera, editors. Frequency Analysis of English Usage. Houghton Mifflin,
New York, 1982.

N. Fridman Noy and M.A. Musen. Smart: Automated support for ontology merging and
alignment. In Proceedings of the Twelfth Banff Workshop on Knowledge Acquisition, Modeling
and Management, Banff, Alberta, 1999.

N. Fridman Noy and M.A. Musen. PROMPT: Algorithm and tool for automated ontology
merging and alignment. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-2000), pages 450-455, Austin, TX, 2000.

A. Gal. Semantic interoperability in information services: Experiencing with CoopWARE.
SIGMOD Record, 28(1):68-75, 1999.

A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Montesi. A framework for modeling and
evaluating automatic semantic reconciliation. VLDB Journal, 2004. to appear.

A. Gal, A. Trombetta, A. Anaby-Tavor, and D. Montesi. A model for schema integration in
heterogeneous databases. In Proceedings of the 7th International Database Engineering and
Application Symposium, Hong Kong, China, July 2003.

Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM Computing
Surveys, 18(1):23-38, March 1986.

R.C. Gonzales and M.G. Thomanson. Syntactic Pattern Recognition — An Introduction.
Addison-Wesley, Reading, Massachusetts, 1978.

T.R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisi-
tion, 5(2):199-220, 1993.

R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective. In Proceed-
mgs of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), pages 51-61. ACM Press, 1997.

M. Jarrar and R. Meersman. Formal ontology engineering in the DOGMA approach. In
Proceedings International Federated Conference ‘On the Move to Meaningful Internet Systems
and Ubiquitous Computing’, pages 1238-1254, October 2002.

J. Kahng and D. McLeod. Dynamic classification ontologies for discovery in cooperative fed-

erated databases. In Proceedings of the First IFCIS International Conference on Cooperative
Information Systems (CooplS’96), pages 26-35, Brussels, Belgium, June 1996.

29

[30]
[31]
[32]

[33]

[35]

[36]

[44]

[45]

M. Kifer, G. Lausen, and J. Wu. Logical foundation of object-oriented and frame-based
languages. Journal of the ACM, 42, 1995.

P. Langley, W. Iba, and K. Thompson. An analysis of bayesian classifiers. In Proceedings of
the Tenth National Conference on Al, pages 223 228, 1992.

I.V. Levenstein. Binary codes capable of correcting deletions, insertions, and revrsals. Cyber-
netics and Control Theory, 10(8):707-710, 1966.

J. Madhavan, P.A. Bernstein, P. Domingos, and A.Y. Halevy. Representing and reasoning
about mappings between domain models. In Proceedings of the Fighteenth National Conference
on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial

Intelligence (AAAI/IAAI), pages 80 86, 2002.

J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with Cupid. In Proceed-
ings of the International conference on very Large Data Bases (VLDB), pages 49-58, Rome,
Italy, September 2001.

A. Maedche and S. Staab. Measuring similarity between ontologies. In Proceedings of the 13th
International Conference on Knowledge Engineering and Knowledge Management. Ontologies
and the Semantic Web (EKAW 2002), pages 251 263, Siguenza, Spain, October 2002.

D.L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging and testing
large ontologies. In Proceedings of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR2000), 2000.

R.J. Miller, M.A. Hernandez, .M. Haas, L.-L.. Yan, C.T.H. Ho, R. Fagin, and L. Popa. The
Clio project: Managing heterogeneity. SIGMOD Record, 30(1):78-83, 2001.

G. Modica, A. Gal, and H. Jamil. The use of machine-generated ontologies in dynamic infor-
mation seeking. In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors, Cooperative
Information Systems, 9th International Conference, CooplS 2001, Trento, Italy, September
5-7, 2001, Proceedings, volume 2172 of Lecture Notes in Computer Science, pages 433-448.
Springer, 2001.

A. Moulton, S.E. Madnick, and M. Siegel. Context mediation on Wall Street. In Proceedings
of the 3rd IFCIS International Conference on Cooperative Information Systems (CooplS’98),
pages 271-279, New York City, New York, August 1998. IEEE-CS Press.

M. Nadler and E. Smith. Pattern Recognition Engineering. John Wiley & Sons Inc., 1993.

S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from semistructured data. In
L.M. Haas and A. Tiwary, editors, Proceedings of the ACM-SIGMOD conference on Manage-
ment of Data (SIGMOD), pages 295-306, Seattle, Washington, June 1998. ACM Press.

A.M. Ouksel and C.F. Naiman. Coordinating context building in heterogeneous information
systems. Journal of Intelligent Information Systems (JIIS), 3(2):151 183, April 1994.

L. Palopoli, L.G. Terracina, and D. Ursino. The system DIKE: Towards the semi-automatic
synthesis of cooperative information systems and data warehouses. In PADBIS-DASFAA,
pages 108-117, 2000.

E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema matching. VLDB
Journal, 10(4):334-350, 2001.

C.J. Van Rijsbergen, editor. Information Retrieval. Butterworths, London, 1979.

30

[46]

[47]

Stuart Russell and Peter Norving. Artificial Intelligence: A Modern Approach. Prentice Hall,
Upper Saddle River, New Jersey, 1995.

Walter L. Ruzzo and Martin Tompa. A linear time algorithm for finding all maximal scor-
ing subsequences. In Thomas Lengauer, Reinhard Schneider, Peer Bork, Douglas L. Brutlag,
Janice I. Glasgow, Hans-Werner Mewes, and Ralf Zimmer, editors, Proceedings of the Sev-
enth International Conference on Intelligent Systems for Molecular Biology, pages 234-241,
Heidelberg, Germany, 1999. AAAL

R. Schalkoff. Pattern Recognition: Statistical, Structural, and Neural Approaches. John Wiley
& Sons Inc., 1992.

P.L. Schuyler, W.T. Hole, and M.S. Tuttle. The UMLS (Unified Medical Language System)
metathesaurus: representing different views of biomedical concepts. Bulletin of the Medical
Library Association, 81:217-222, 1993.

A. Sheth and J. Larson. Federated database systems for managing distributed, heterogeneous,
and autonomous databases. ACM Computing Surveys, 22(3):183-236, 1990.

A.P. Sheth, S.K. Gala, and S.B. Navathe. On automatic reasoning for schema integration. In-
tenational Journal on Intelligent Cooperative Information Systems (IJICIS), 2(1):23 50, June
1993.

P. Simon. Parts: A Study in Ontology. Clarendon Press, New York, NY, 1987.

D. Soergel. Organizing information : principles of data base and retrieval systems. Academic

Press, Orlando, FA, 1985.

P. Spyns, R. Meersman, and M. Jarrar. Data modelling versus ontology engineering. ACM
SIGMOD Record, 31(4), 2002.

A. Varzi. On the boundary between mereology and topology. In R. Casati, B. Smith, and
G. White, editors, Philosophy and the Cognitive Sciences. Hoelder-Pichler-Tempsky, Vienna,
Austria, 1994.

B.C. Vickery. Faceted classification schemes. Graduate School of Library Service, Rutgers, the
State University, New Brunswick, N.J., 1966.

31

