
A Randomized Approach for the Incremental

Design of an Evolving Data Warehouse

Dimitri Theodoratos, Theodore Dalamagas, Alkis Simitsis, and
Manos Stavropoulos

National Technical University of Athens
Department of Electrical and Computer Engineering

Zographou 157 73, Athens, Greece
{dth, dalamag, asimi, estavro}@dblab.ece.ntua.gr

Abstract. A Data Warehouse (DW) can be used to integrate data from
multiple distributed data sources. A DW can be seen as a set of mate-
rialized views that determine its schema and its content in terms of the
schema and the content of the data sources. DW applications require
high query performance. For this reason, the design of a typical DW
consists of selecting views to materialize that are able to answer a set
of input user queries. However, the cost of answering the queries has
to be balanced against the cost of maintaining the materialized views.
In an evolving DW application, new queries need to be answered by the
DW. An incremental selection of materialized views uses the materialized
views already in the DW to answer parts of the new queries, and avoids
the re-implementation of the DW from scratch. This incremental design
is complex and an exhaustive approach is not feasible. We have devel-
oped a randomized approach for incrementally selecting a set of views
that are able to answer a set of input user queries locally while minimiz-
ing a combination of the query evaluation and view maintenance cost.
In this process we exploit “common sub-expressions” among new queries
and between new queries and old views. Our approach is implemented
and we report on its experimental evaluation.

1 Introduction

A Data Warehouse (DW) is a repository of information integrated from multiple
data sources. A DW is devoted to On-Line Analytical Processing (OLAP) and
Decision Support System (DSS) applications [30,15,11,2]. Current DWs accu-
mulate enormous quantities of data. OLAP queries are complex data intensive
queries involving grouping/aggregation and sequential scans. Therefore, query
evaluation in the DW has to be efficient in order to guarantee fast answers to the
analysts. The data stored in a DW need to be eventually updated in response
to updates of the source data.

A DW is usually seen as a set of materialized views defined over the relations
of the data sources. These views determine its schema and content in terms of
the schema and the content of the data sources. In order to achieve high query

H.S. Kunii, S. Jajodia, and A. Sølvberg (Eds.): ER2001, LNCS 2224, pp. 325–338, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



326 Dimitri Theodoratos et al.

performance, the queries are evaluated using exclusively the materialized views.
The query evaluation cost of a set of queries is the cost of evaluating these
queries rewritten completely [18,7,4,3] over the materialized views. The materi-
alized views are usually maintained incrementally. In an incremental strategy,
only the changes that must be applied to the views are computed from the
changes of the source relations [8,6,19]. The DW view maintenance cost is the
cost of propagating the source relation changes to the materialized views that
are affected by these changes.

A central problem in the design of a DW is the selection of views to mate-
rialize given a set of input queries that the DW has to satisfy. When designing
a DW, one of the most significant challenges is the minimization of the query
evaluation cost. However, maintaining the materialized views is a particularly
time consuming process that makes part of the data unavailable for querying.
Therefore, in order to ensure sufficient availability of the stored data and satis-
factory query response time, a reduction in the query evaluation cost must be
balanced against an increase in the view maintenance cost. Many approaches
attempt to appropriately select views for materialization that exploit common
sub-expressions between the input queries and minimize a combination of the
query evaluation and the view maintenance cost [9,27,1,31,28,26]. This last solu-
tion, though more complex, achieves a balance between query performance and
availability of the data.

The problem. DWs are dynamic and evolve over time. As the needs of the
analysts expand, new queries need to be satisfied by the DW. Some of these new
queries can be answered by the views that are already materialized in the DW.
In general though, new materialized views need to be added to the DW either
for answering the new queries or for improving the evaluation performance of
the new queries. The new queries are then answered through rewritings over the
old views, or over the new views, or partially over the new and partially over
the old views. Re-implementing the whole DW from scratch for dealing with
the new queries is complex and implies the unavailability of the data for a long
period of time. In [29] we avoid re-implementation and present an incremental
approach that selects new views for materialization that minimizes the combined
cost of evaluating the new queries and maintaining the new materialized views.
We also provide transformation rules that generate alterative view selections for
materialization and query evaluation plans for the queries from the views in the
form of AND/OR dags. Each view in a view selection is used for evaluating
at least one new query. The transformation rules are shown to be sound and
complete. In this sense, by exhaustively applying the rules, the view selection
that minimizes the combined cost can be found. Nevertheless, for a large number
of complex queries, the search space can be very big. In real cases, it is unfeasible
to use an exhaustive algorithm for exploring it.

Contribution. In this paper, we present a randomized approach for the incre-
mental design of a DW that is, for the selection of new views to materialize in the
DW. The approach is based on the Simulated Annealing process. Since its first
appearance [16], Simulated Annealing has been used in a variety of optimiza-



Incremental Design of an Evolving Data Warehouse 327

tion problems. In the Database area, it has been used for query optimization
[14,24,23,13]. Even though it has been studied in research works, it has not been
adopted in commercial products. The reason is that randomized algorithms such
as Simulated Annealing, although they return far better results than heuristic
or greedy algorithms, they require a longer running time [22]. In the incremental
design of a DW, the time restrictions are not so crucial. Further, Simulated An-
nealing is especially well suited to optimization problems with large search spaces
and with cost functions that manifest a large number of local minima [14] as is
the case here. Thus, Simulated Annealing is a good candidate for incrementally
designing a DW.

Some parameters of the simulated annealing algorithm depend on the prob-
lem addressed while others are implementation-dependent. For the problem in
hand, we use multiquery AND/OR dags (AO dags) and transformations rules to
define a search space suitable for applying the Simulated Annealing. The search
space is a graph of states. The states of the search space (nodes of the graph)
are multiquery AO dags. A move from one state to another in the search space
(an edge of the graph) roughly corresponds to application of a transformation
rule. The cost of each state is the combined cost of evaluating the new queries
according to the evaluation plans represented in a state and maintaining new
materialized views. Note that our approach does not depend on the way these
costs are assessed.

We have implemented the Simulated Annealing approach for incrementally
designing a DW. We have first run a number of experiments to choose the im-
plementation dependent parameters. The approach is then applied for selecting
views defined over a real-world star schema [15] comprising one fact table and
three dimension tables with three to four hierarchy levels. The number of di-
mensions and hierarchy levels of this schema and the number of types of views
are intentionally kept small so that the solution returned by our approach can
be compared with that of the exhaustive algorithm when a number of the pa-
rameters of the problem vary.

Outline. The rest of the paper is organized as follows. The next section reviews
related work. Section 3 introduces multiquery AO dags, states formally the in-
cremental design problem in terms of multiquery AO dags, and describes the
transformation rules. In Section 4 we briefly present the Simulated Annealing
algorithm, and we show how the problem-dependent and implementation depen-
dent parameters are defined for the incremental design problem. Section 5 deals
with implementation issues and presents experimental results. We conclude in
Section 6 and provide directions for further work.

2 Related Work

Although many works deal with the design of a DW, only few of them address
dynamic issues. The works dealing with the design of a DW can be classified
according to the class of queries and views considered, the cost function they at-
tempt to minimize, the constraints that impose to the problem, and the approach
adopted for solving it. [12] aims at minimizing the query evaluation cost in the



328 Dimitri Theodoratos et al.

context of aggregations and multidimensional analysis under a space constraint.
In the same context, [1] proposes techniques that consider only the relevant
elements in the search space of the problem.Given a materialized SQL view,
[21] presents an exhaustive approach as well as heuristics for selecting auxiliary
views that minimize the total view maintenance cost. Given an SPJ view, [20]
derives, using key and referential integrity constraints, a set of auxiliary views,
other than the base relations, that eliminate the need to access the base rela-
tions when maintaining both the initial and the auxiliary views (i.e. that makes
the views altogether self-maintainable). In [9] greedy algorithms are provided
for selecting views to materialize that minimize the query evaluation cost un-
der a space constraint. A integer programming solution for selecting views that
minimize the combined cost is given in [31]. A variation of the DW design prob-
lem endeavoring to select a set of views that minimizes the query evaluation
cost under a total maintenance cost constraint is adopted in [10]. None of the
previous approaches requires the queries to be answerable exclusively from the
materialized views in a non-trivial manner (that is, without considering that the
source relations and the materialized views reside in the same site, and without
replicating all the source relation at the DW). This requirement is taken into ac-
count in [27] where the problem of configuring a DW without space restrictions
is addressed for a class of select-join queries. This work is extended in [28] in
order to take into account space restrictions, multiquery optimization over the
maintenance expressions, and the use of auxiliary views when maintaining other
views. [26] deals with the same problem for a class of PSJ queries under space
restrictions.

The approaches adopted by the previous papers are tailored for the static DW
design problem. An incremental version of the DW design problem (dynamic DW
design) is addressed in [29]. [17] presents a system that dynamically materializes
information at multiple levels of granularity. However, this approach is not based
on a given set of queries for selecting view materializations but it cashes the
results of incoming queries in order to match the workload and maintenance
restrictions. [25] deals with a problem that is somehow complementary to the
incremental design problem: detect materialized views that become redundant
in an evolving DW. We are not aware of any work using the Simulated Annealing
process for the design of a DW. Papers using Simulated Annealing for optimizing
queries are cited in the introduction.

3 Problem Formulation and Transformation Rules

We present in this section an AO dag representation for multiple queries and
views. We then formulate the problem in terms of AO dags and describe infor-
mally the AO dag transformation rules introduced in [29].

3.1 Problem Formulation

Multiquery AO dags [5,21] provide a convenient, compact, representation of
alternative ways of evaluating multiple queries from source relations and views



Incremental Design of an Evolving Data Warehouse 329

and of subexpression sharing between relations and views. This representation is
quite general to allow for complex queries including grouping/aggregation queries
that are extensively used in DWing applications. It distinguishes between AND
nodes that correspond to views (henceforth view nodes) and OR nodes that
correspond to operations (henceforth operation nodes). An extension of these
dags with marked view nodes [29] allows the representation of views already
materialized in the DW (old views).

Consider the following source relations that form a star schema:

Location(Store, City, Country, Continent) abbreviated as L
Product(Item, Type, Category) abbreviated as P
Time(Date, Month, Quarter, Year) abbreviated as T
Sales(Store, Item, Date, Amount) abbreviated as S

S is a fact table comprising one measure attribute Amount and foreign key at-
tributes to the dimension tables L, P, and T. The dimension tables comprise
different hierarchy attributes. We have used this schema for applying our ap-
proach in the experiments.

As an example, a small multiquery AO dag representing alternative ways of
evaluating three queries Q1, Q2, and Q3 from the source relations is shown in
Figure 1(a). These queries join the fact and the dimension tables and aggregate
the resulting table at different aggregation levels. For simplicity only the fact
table S and the dimension tables L and P are involved. In Figure 1(a), small circles

S

V4

L P

V3

V2
Q3

Q2Q1

V1 V5

Store,TypeCountry,Item

Continent,Type

Category

Category
Continent,Type

Continent,Type

ItemStore

Country Type

S

V4

L P

V3

V2
Q3

Q2Q1

V1 V5

Store,Type

Continent,Type

Category

Category
Continent,Type

Continent,Type

ItemStore

Country Type

a. b.

Fig. 1. (a) A multiquery AO dag for the queries Q1, Q2, and Q3, (b) Initial
multiquery AO dag.

represent operation nodes while bigger ones represent view nodes. An operation
node is labeled by the corresponding operation, and a view node by a view name.
Some view nodes correspond to the queries Q1, Q2 and Q3. These view nodes
are labeled by the names of the queries and are called query nodes. Marked view
nodes (old materialized views) are shown by filled black circles (view nodes V2

and P in Figure 1(a)). Only two types of operations are involved: (a) a binary



330 Dimitri Theodoratos et al.

one, the natural join operation, 1A, where A denotes the attribute on which the
join is performed, and (b) a unary one, the generalized projection operation [7],
πX,sum(A), where X is a set of grouping attributes from the dimension relations
and A is a measure attribute aggregated by the aggregate function sum. For
concreteness the aggregated measure sum(A) is omitted in the figures. Three
different alternative plans for query Q1, two for query Q2, and one for query
Q3 are depicted in the multiquery AO dag of Figure 1(a). Note that some views
(expressions) are shared between the plans of different queries. For instance,
view V5 is shared between a plan of query Q1 and a plan of query Q2, while
query Q3 is a view node in an evaluation plan of query Q2.

Some other AO dags for the queries Q1, Q2 and Q3 are shown in Figures
1(b), 2(a), and 2(b). These multiquery AO dags are subdags of the multiquery
AO dag of Figure 1(a). In contrast to the multiquery AO dag of Figure 1(a), in
the multiquery AO dags of Figures 1(b), 2(a), and 2(b) the sink nodes are not
necessarily source relations. In a multiquery AO dag for a set of queries, all the
query nodes are present, and the same holds for the marked nodes. All the root
nodes are query nodes (but a query node is not necessarily a root node). The sink
nodes are view nodes and represent materialized views. Those of the sink nodes
that are not marked are the new views to materialize in the DW. For instance in
the multiquery AO dag of Figure 2(b), the materialized views are the views (or
relations) L, S, P, V2, and V5, of which L, S, and V5 are new views to materialize
in the DW, and P, V2 are views already materialized in the DW (old views). For
each query node, at least one evaluation plan from the sink nodes is represented.
Note that since the sink nodes represent (old and new) materialized views, every
query can be evaluated using the materialized views. Every sink node that is not
a marked node occurs in at least one query evaluation plan.

The incremental design problem that we address in this paper can now be for-
mulated as follows. Consider a multiquery AO dag G, for a set Q of new queries
and a set V0 of old views, which represents alternative evaluation plans for the
queries in Q over the source relations. G is given as input to the problem. The
goal is to find a multiquery AO dag G′ for Q and V0, subdag of G, such that the
combined cost of evaluating the queries in Q according to the query evaluation
plans represented in G′, and maintaining the new materialized views represented
in G′ is minimal. In our simplified example we let the multiquery AO dag of
Figure 1(a) be the input to the problem.

3.2 An Example of Application of the Rules

In order to deal with the problem we first construct a multiquery AO dag G0

from G as follows: Remove from G all the nodes and edges that appear solely
in evaluation plans of the marked nodes (and not in those of any other query).
G0 is called initial multiquery AO dag. All the marked nodes in G0 are sink
nodes. In our example, the initial multiquery AO dag is shown in Figure 1(b).
The intuition behind the construction of the initial multiquery AO dag is the
following: since the marked nodes represent views that are materialized and thus
are available, their evaluation need not be represented in the multiquery AO dag.



Incremental Design of an Evolving Data Warehouse 331

The initial multiquery AO dag is the starting point from which we can apply
two transformation rules for multiquery AO dags. Consider a multiquery AO dag
G. The first transformation rule (called here New Materialized View Creation)

S

V4

L P

V3

V2
Q3

Q2Q1

V1 V5

Store,Type

Continent,Type

Category
Continent,Type

Continent,Type

ItemStore

Country

S

V4

L P

V2
Q3

Q2Q1

V1 V5

Store,Type

Category
Continent,Type

Item

Country

a b

Fig. 2. A multiquery AO dag for Q1, Q2, and Q3 after an application of (a) the
first rule, and (b) the second rule.

can be applied to a view node V in G that is not a sink node and to a query node
Q in G that can be evaluated in G using V . Nodes V and Q can coincide. New
Materialized View Creation rule makes node V a sink node (new materialized
view) and forces query Q to be evaluated using V . In order to do so, first, it
removes from G all the nodes and the edges that are solely used for evaluating
V (and not any other query). Then, it removes from G all the nodes and edges
that are solely used for evaluating Q without using V . Figure 2(a) shows the
result of applying the New Materialized View Creation rule to the view node V5

and the query node Q2 of the multiquery AO dag of Figure 1(b). Note that view
node V5 is now a sink node and query Q2 can be evaluated only using V5. The
evaluation plans of the other queries are not affected.

The second transformation rule (called here Evaluation Plan Elimination)
can be applied to a view node V in G that is a sink or query node and to a
query node Q in G that can be evaluated in G using V but also without using
V . Evaluation Plan Elimination rule forces Q to be evaluated using V . Thus, it
removes from G all the nodes and edges that are solely used for evaluating Q
without using V . Figure 2(b) shows the result of applying the Evaluation Plan
Elimination rule to the view node V2 and the query node Q1 of the multiquery
AO dag of Figure 2(a). Note that query Q2 can now be evaluated only using V2.
The evaluation plans of the other queries are not affected.

If we assume that a new materialized view is used in at least one optimal
query evaluation plan of a new query (that is, views are not materialized in
the DW exclusively for supporting the view maintenance process) the previous
two rules are sound and complete [29]. This means that an optimal solution to
the problem (a multiquery AO dag, subdag of the initial multiquery AO dag,



332 Dimitri Theodoratos et al.

that yields the minimal combined cost) can be obtained by finitely applying in
sequence the two transformation rules to the initial multiquery AO dag.

4 The Randomized Approach

Each solution to an optimization problem can be seen as a state in a search
space. Each state has a cost associated with it which is given by a cost function.
The states are connected by directed edges that are defined by moves. A move
set is the set of moves available to go from one state to another. A move that
reduce the cost of a state is called downhill move, while one that increases the
cost of a state is called uphill move. Two states are called adjacent if one can
go from one to the other by one move. A local minimum is a state that has the
lowest cost among all its adjacent states. A global minimum is a state that has
the lowest cost among all the states. In a search space there can be more than
one local and global minimum. The optimal solution to the problem corresponds
to a global minimum. Randomized algorithms perform a“random” walk through
a solution space along the edges defined by the moves. Simulated Annealing is
a randomized algorithm that has been successfully applied to a great number
of different optimization problems. It has theoretical foundations and simplicity.
We show in this section how the Simulated Annealing process can be adapted
to the incremental DW design problem.

4.1 Simulated Annealing

The Simulated Annealing algorithm [16] tries to simulate the annealing process
of crystals. In this process the temperature of a fluid is slowly decreased un-
til the system reaches a state of minimum energy. The slower the temperature
reduction, the lower the energy of the final state. The cost function of a state
plays the role of the energy in the annealing process of crystals. As in other opti-
mization techniques, the Simulated Annealing algorithm always accepts downhill
moves but also uphill moves with some probability that depends on a number
of parameters.

Figure 3 illustrates the behavior of Simulated Annealing. Two nested loops
can be seen in this algorithm. In the inner loop the temperature is kept constant.
A downhill move is always allowed. An uphill move is allowed with some prob-
ability that depends on the temperature and the difference between the actual
state’s cost and the new state’s cost. The inner loop is finished when an equi-
librium condition is met. Then the temperature is reduced and the inner loop is
started again. The outer loop is finished when a freezing condition is met.

A number of parameters need to be determined for applying the algorithm to
the incremental DW design problem. States, moves and cost function are prob-
lem dependent parameters. The parameters: initial state, initial temperature,
temperature reduction, equilibrium condition, and freezing condition depend on
the implementation of the process.



Incremental Design of an Evolving Data Warehouse 333

Input: initial state, initial temperature;
Output: minstate;

begin

minstate := initial state; cost := Cost(initial state); mincost := cost;
temp := initial temperature;
repeat

repeat

newstate :=state after random move; newcost := Cost(newstate);
if newcost ≤ cost then

state := newstate; cost := newcost

else with probability e
newcost−cost

temp

state := newstate; cost := newcost
end;
if cost < mincost then

minstate := state; mincost := cost
end

until equilibrium not reached;
reduce temperature

until not frozen;
return minstate

end

Fig. 3. Simulated Annealing Algorithm

4.2 Problem-Dependent Parameters
Consider a multiquery AO dag G, for a set Q of new queries and a set V0 of old
views, which represents alternative evaluation plans for the queries in Q over
the source relations.

States. A state is a multiquery AO dag G′ for Q and V0 such that (a) G′ is a
subdag of G, and (b) all the marked view nodes in G′ are sink nodes. Thus, the
search space is a graph of multiquery AO dags.

Moves. There is a move (edge) from a state s to a state s′ if s′ can be obtained
from s by applying any of the two transformation rules presented in the previous
section. Each of these rules removes at least one edge from the multiquery AO
dag to which it is applied. Thus, the search space defined this way is an acyclic
directed graph. The Simulated Annealing process requires the search space to
be a strongly connected graph i.e. for any two states s and s′, there is path in
the search space from s to s′ and from s′ to s. In the implementation of the
algorithm, when a random move leading to a state s is performed, the adjacent
to s state is kept available. Therefore, the moves are reversible. This way the
previous requirement is satisfied.

Cost function. Given a state G′, the evaluation cost E(Q) of the queries in Q
is the (possibly) weighted sum of the cost of the optimal evaluation plan of each
query in Q among the plans represented in G′. The weights in E(Q) reflect
the frequency (or importance) of the corresponding queries. Let V be the set of
new materialized views in G′ (that is, the set of sink nodes that are not in V0).



334 Dimitri Theodoratos et al.

The view maintenance cost M(V) of the new views in V is the weighted sum of
propagating the changes of the source relations to the views that are affected by
these changes. The weights in M(V) reflect the frequencies of propagating the
changes of the corresponding source relations. The cost of the state G′ is the
combined sum E(Q)+c∗M(V). The parameter c indicates the importance of the
query evaluation vs. the view maintenance cost and is set by the DW designer.
A typical value of c is 1. c < 1 privileges the query evaluation cost, while c > 1
privileges the view maintenance cost in the incremental design of the DW. If the
query evaluation cost is more important, the DW designer has the choice to give c
a value much smaller than 1 in order to determine a view selection that has good
query performance, and conversely. Low query evaluation cost can be obtained
by materializing all the new queries (in general view nodes close to the root nodes
of the graph). Low view maintenance cost can be obtained by materializing all
the base relations that are not already materialized (non-marked sink nodes in
the initial multiquery AO dag).

4.3 Implementation Dependent Parameters

Initial state. A theoretical analysis of the simulated annealing but also multi-
ple experimental studies show that the effectiveness of the algorithm in finding
the global minimum state is independent of the choice of the initial state [14].
Therefore we select as an initial state the initial multiquery AO dag G0.

Initial temperature. The initial temperature has to be sufficiently low to allow
many uphill moves to be performed in the beginning. After a series of experi-
ments we found that an initial temperature of twice the cost of the initial state
shows a good performance. An increase of the multiplicative factor beyond 2 does
not improve significantly the quality of the solution returned while importantly
increasing the execution time of the algorithm.

Temperature reduction. Different previous works [24,13] have successfully exper-
imented with a temperature reduction process where the new temperature is a
percentage α of the old temperature and this percentage remains constant dur-
ing the whole process. A typical value for α is in the range 0.9 to 0.95. Our
experimental results indicated that 0.9 shows a good trade off between quality
of the solution returned and execution time.

Equilibrium condition. This condition determines the number of times the inner
loop of the algorithm is executed. This number can be dependent on the current
temperature. Here it is assumed to be constant throughout the annealing and is
experimentally set to be equal to 6.

Freezing condition. This condition determines when the annealing process termi-
nates. The temperature is so low that accepted moves (either uphill or downhill)
are negligible. A typical condition that is also adopted here consists of two tests:
whether the temperature is below 1 and whether the final state does not change
for four consecutive iterations through the outer loop of the algorithm.

Finally, each possible move from a state has equal probability to be chosen.



Incremental Design of an Evolving Data Warehouse 335

5 Experimental Results

We have performed a number of experiments to evaluate the Simulated An-
nealing process for incrementally designing a DW. We have chosen an input
multiquery AO dag where the source relations are the dimension tables and
the fact table presented in Section 3. The multiquery AO dag comprises both
unary (generalized projection) and binary (natural join) operation nodes. It is
reasonably sized so that an exhaustive algorithm can also be executed on it. We
have adopted a simple cost model for evaluating the queries and maintaining the
views. We consider that each view is maintained separately, and the materialized
views are maintained by recomputation. The weights in the cost formulas are
equal to 1. We have measured the time needed to execute the Simulated Anneal-
ing algorithm, and the quality of the solution returned when different factors
of the problem vary. The quality of the solution is expressed as a percentage of
the cost of the solution returned by the Simulated Annealing approach divided
by the cost of the solution returned by the exhaustive algorithm. The varying
factors are the size of the multiquery AO dag, the number of new queries, the
number of marked nodes, and the parameter c in the cost function.

Experiment 1: The size of the Multiquery AO dag varies. This size is expressed
as the number of view nodes in the Multiquery AO dag. Figures 4(a) and (b) plot
the solution quality and the execution time against the number of view nodes
in the multiquery AO dag. Each point in these and in the subsequent plots is
averaged over four executions of the algorithm. The solution quality degrades as
the number of view nodes increases but does not drop below 70%.

Experiment 2: The number of queries varies. Figures 4(c) and (d) plot the so-
lution quality and the execution time against the number of query nodes in
the multiquery AO dag. The solution quality increases and the execution time
degrades as the number of query nodes increases. This is due to the fact that
in contrast to the other view nodes, the query nodes are not removed from a
multiquery AO dag by an application of the rules. Therefore, an increase in the
number of the query nodes reduces the size of the search space.

Experiment 3: The number of marked nodes varies. Figures 4(e) and (f) plot the
solution quality and the execution time against the number of marked nodes
in the multiquery AO dag. The solution quality increases and the execution
time degrades as the number of marked nodes increases. This is due to the
facts that (a) the marked nodes are not removed from a multiquery AO dag
by an application of the rules, and (b) their evaluation plans are removed from
the multiquery AO dag. Therefore, as with the query nodes, an increase in the
number of the marked nodes, reduces the size of the search space.

Experiment 4: The parameter c varies. Figures 4(g) and (h) plot the solution
quality and the execution time against parameter c of the cost function. The
solution quality increases and the execution time degrades as parameter c in-
creases. This is due to the fact that when c > 1, the cost of a state is determined
primarily by the materialized view maintenance cost. Low view maintenance cost



336 Dimitri Theodoratos et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Quality and time vs. number of view nodes, number of queries, number
of marked view nodes and parameter c.



Incremental Design of an Evolving Data Warehouse 337

can be obtained by the states that are close to the initial state (that is, can be
reached by few moves). In fact, if the cost of a state is determined uniquely by
the view maintenance cost, the initial state has the minimal cost. The opposite
happens when c < 1 where the cost of a state is determined primarily by the
query evaluation cost.

6 Conclusion

Data Warehouses are dynamic entities that evolve over time. As the needs of
the analysts grow new queries need to be satisfied. In general, new views need to
be materialized either for satisfying the new queries or for performance reasons.
Re-implementing the DW from scratch is complex and time consuming. A better
solution is the incremental design of a DW where new views are materialized
in order to minimize the combined evaluation cost of the new queries and the
maintenance cost of the new views. A previous work on this problem provided
theoretical foundations for a solution and an exhaustive algorithm. However, due
to the size of the problem an exhaustive algorithm cannot be of practical interest
in real cases.

We have presented a randomized approach based on the Simulated Annealing
process for incrementally designing a DW. Simulated Annealing is an algorithm
good for optimization problems with a large search space. The definition of the
search space has been based on an AND/OR dag representation for multiple
queries and views that is able to represent alternative evaluation plans of the
queries from the materialized views and subexpression sharing among queries
and between queries and views. Our approach has been implemented. The ex-
perimental results are encouraging and show the feasibility of the approach.

In this work we impose a constraint on a materialized view selection: the new
views and the old views together must be able to answer all the new queries. An
interesting extension of this work concerns the design of efficient approaches for
the incremental design of a DW when additional constraints are imposed, as for
instance, space or view maintenance cost constraints and integrity constraints.

References

1. E. Baralis, S. Paraboshi, and E. Teniente. Materialized view selection in a multidi-
mensional database. In Proc. of the 23rd VLDB Conf., pages 156–165, 1997.

2. S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Tech-
nology. SIGMOD Record, 26(1):65–74, 1997.

3. S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate queries using views. In
Proc. of the 18th ACM PODS Symp., pages 155–166, 1999.

4. S. Dar, H. V. Jagadish, A. Y. Levy, and D. Srivastava. Answering SQL Queries
with Aggregation using Views. In Proc. of the VLDB Conf., pages 318–329, 1996.

5. G. Graefe and W. J. McKenna. The Volcano Optimizer Generator: Extensibility
and Efficient Search. In Proc. of the 9th ICDE Conf., pages 209–217, 1993.

6. T. Griffin and L. Libkin. Incremental Maintenance of Views with Duplicates. In
Proc. of the ACM SIGMOD Conf., pages 328–339, 1995.



338 Dimitri Theodoratos et al.

7. A. Gupta, V. Harinarayan, and D. Quass. Aggregate-Query Processing in Data
Warehousing Environments. In Proc. of the VLDB Conf., pages 358–369, 1995.

8. A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems, tech-
niques and applications. Data Engineering, 18(2):3–18, 1995.

9. H. Gupta. Selection of Views to Materialize in a Data Warehouse. In Proc. of the
6th Intl. Conf. on Database Theory, pages 98–112, 1997.

10. H. Gupta and I. S. Mumick. Selection of Views to Materialize Under a Maintenance
Cost Constraint. In Proc. of the 7th ICDT Conf., pages 453–470, 1999.

11. J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge. The Stanford
Data Warehousing Project. Data Engineering, 18(2):41–48, 1995.

12. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing Data Cubes
Efficiently. In Proc. of the ACM SIGMOD Conf., 1996.

13. Y. Ioannidis and Y. Kang. Randomized algorithms for optimizing large join queries.
In Proc. of the ACM SIGMOD Conf., pages 9–22, 1990.

14. Y. Ioannidis and E. Wong. Query optimization by simulated annealing. In Proc.
of the ACM SIGMOD Intl. Conf. on Management of Data, pages 9–22, 1987.

15. R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, 1996.
16. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-

ing. Science, 220(4598):671–680, 1983.
17. Y. Kotidis and N. Roussopoulos. DynaMat: A Dynamic View Management System

for Data Warehouses. In Proc. of the ACM SIGMOD Conf., pages 371–382, 1999.
18. A. Levy, A. O. Mendelson, Y. Sagiv, and D. Srivastava. Answering Queries using

Views. In Proc. of the ACM PODS Symp., pages 95–104, 1995.
19. D. Quass. Maintenance Expressions for Views with Aggregation. In Workshop on

Materialized Views: Techniques and Applications, pages 110–118, 1996.
20. D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making Views Self Maintainable

for Data Warehousing. In Proc. of the 4th PDIS Conf., pages 158–169, 1996.
21. K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized View Maintenance

and Integrity Constraint Checking: Trading Space for Time. In Proc. of the ACM
SIGMOD Conf., pages 447–458, 1996.

22. M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized opti-
mization for the join ordering problem. VLDB Journal, 6:191–208, 1997.

23. A. Swami. Optimization of Large Join Queries: Combining Heuristics and Combi-
natorial Techniques. In Proc. of the ACM SIGMOD Conf., pages 367–376, 1989.

24. A. Swami and A. Gupta. Optimization of Large Join Queries. In Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages 8–17, 1988.

25. D. Theodoratos. Detecting Redundant Materialized Views in Data Warehouse
Evolution. Information Systems, 26(5), 2001.

26. D. Theodoratos, S. Ligoudistianos, and T. Sellis. View Selection for Designing the
Global Data Warehouse. To appear in Data and Knowledge Engineering.

27. D. Theodoratos and T. Sellis. Data Warehouse Configuration. In Proc. of the 23rd
Intl. Conf. on Very Large Data Bases, pages 126–135, 1997.

28. D. Theodoratos and T. Sellis. Designing Data Warehouses. Data and Knowledge
Engineering, Elsevier, 31(3):279–301, Oct. 1999.

29. D. Theodoratos and T. Sellis. Incremental Design of a Data Warehouse. Journal
of Intelligent Information Systems, Kluwer Academic Publishers, 15(1):7–27, 2000.

30. J. Widom. Research Problems in Data Warehousing. In Proc. of the 4th Intl.
Conf. on Information and Knowledge Management, pages 25–30, Nov. 1995.

31. J. Yang, K. Karlapalem, and Q. Li. Algorithms for Materialized View Design in
Data Warehousing Environment. In Proc. of the VLDB Conf., pages 136–145, 1997.


	Introduction
	Related Work
	Problem Formulation and Transformation Rules
	Problem Formulation
	An Example of Application of the Rules

	The Randomized Approach
	Simulated Annealing
	Problem-Dependent Parameters
	Implementation Dependent Parameters

	Experimental Results
	Conclusion

