
On the Computation of Relational
View Complements

JENS LECHTENBÖRGER and GOTTFRIED VOSSEN
University of Münster, Münster, Germany

Views as a means to describe parts of a given data collection play an important role in many
database applications. In dynamic environments where data is updated, not only information
provided by views, but also information provided by data sources yet missing from views turns
out to be relevant: Previously, this missing information has been characterized in terms of view
complements; recently, it has been shown that view complements can be exploited in the context
of data warehouses to guarantee desirable warehouse properties such as independence and self-
maintainability. As the complete source information is a trivial complement for any view, a natural
interest for “small” or even “minimal” complements arises. However, the computation of minimal
complements is still not very well understood. In this article, it is shown how to compute reasonably
small (and in special cases even minimal) complements for a large class of relational views.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—relational
databases; H.2.7 [Database Management]: Database Administration—data warehouse and
repository

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Relational algebra, views, view complements, minimal com-
plements, data warehouses, self-maintainability

1. INTRODUCTION

The notion of a view as a means to describe parts of a given data collection plays
an important role in many database applications. For example, views may be
used to restrict the amount of information that a user has to care about or is
allowed to access, or views can be used to formalize the integration of (part of
the) information provided by multiple data sources. In dynamic environments
where data is updated, not only information provided by views, but also

A preliminary version of this article, showing some of the results in considerably condensed form,
appeared in Proceedings of the 21st Annual ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems (PODS), ACM, New York, 2002, pp. 142–149.
Authors’ address: Department of Information Systems, University of Münster, Leonardo-Campus
3, D-48149 Münster, Germany; email: {lechten,vossen}@helios.uni-muenster.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0362-5915/03/0600-0175 $5.00

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003, Pages 175–208.

176 • J. Lechtenbörger and G. Vossen

information provided by data sources yet missing from views, turns out to be
relevant: In Bancilhon and Spyratos [1981], this missing information has been
characterized in terms of view complements and used to translate updates on
views to updates on base relations. Intuitively, a complement of a set V of views
is another set C of views such that the base relations can be reconstructed
from V and C. Recently, it has been shown [Laurent et al. 2001] that view
complements can be exploited in the context of data warehouses to guarantee
desirable warehouse properties such as independence and self-maintainability.
As the complete source information is always a trivial complement for any
view, a natural interest for “small” or even “minimal” complements arises.
However, the computation of minimal complements is not too well understood.
In this article, we show how to compute reasonably small (and in special cases
even minimal) complements for monotonic relational views, where the size of
complements is measured in terms of their information content.

To give the reader an idea of the improvements of our approach towards
the computation of “small” complements compared to the previous methods
[Cosmadakis and Papadimitriou 1984; Laurent et al. 2001] consider the follow-
ing example:

Example 1.1. Consider a single base relation R with attributes A, B, and
C, where A is the key, as well as views V1 and V2 over R defined as follows:
V1 =df πAB(R) and V2 =df σφ(R).1 Now, a complement of {V1, V2} is a set C of
views such that R can be computed from the views in {V1, V2} and C.

The approach described in Cosmadakis and Papadimitriou [1984], which
deals only with projection views, ignores V2. Moreover, a minimal comple-
ment of V1 according to Cosmadakis and Papadimitriou [1984] is a second
projection πX (R) where X is a minimal subset of R ’s attributes such that R
can be computed by the join V1 1πX (R). Clearly, we hence obtain complement
C1={πAC(R)}.

On the other hand, the approach described in Laurent et al. [2001], where
every complementary view is restricted to have the same schema as some base
relation, does not make use of the information provided by projection view V1.
Without going into details, we note that for the set of views {V1, V2} Laurent
et al. [2001] derive the complement C2={R\V2}, which allows to compute R as
V2 ∪ (R\V2).

By contrast, our approach makes use of both views V1 and V2 to reduce the
size of the complement. In a sense, we present a combination of the approaches
in Cosmadakis and Papadimitriou [1984] and Laurent et al. [2001], as our com-
plements extend the ones given in Laurent et al. [2001] by allowing projections
given in Cosmadakis and Papadimitriou [1984]. Indeed, Theorem 3.22 (see
Section 3) produces complement C={CAB

R , CAC
R } for the set of views {V1, V2},

where

CAB
R =df πAB(R)\(πAB(V1)∪πAB(V2))

CAC
R =df πAC(R)\πAC(V2).

1The symbol =df associates a view name with a defining expression, cf. Section 2.1.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 177

We note that πAB(V1)=V1=πAB(R), hence CAB
R is constantly empty and can

therefore be removed from C without loss of information; moreover, this fact
can be detected using the techniques of Sagiv and Yannakakis [1980]. Based on
this remark, it should be clear that our complement C is intuitively smaller than
both previous complements C1 and C2. In fact, it can be shown that C is indeed
smaller than C1 and C2 with respect to information content (as formalized by
the view ordering <ic; see Definition 2.4). Finally, R can be computed from
{V1, V2} and C by V2 ∪ (V1 1 CAC

R).

The results presented in this article extend the approach towards the com-
putation of view complements previously presented in Laurent et al. [2001] in
the following nontrivial ways:

—In Laurent et al. [2001], the computation of complements for PSJ views, that
is, views defined by join, followed by selection, followed by projection, was
studied, whereas we additionally consider renaming and union.

—The size of complements was measured based on query containment in
Laurent et al. [2001], whereas we use information content for this purpose,
which allows (a) to compare larger classes of candidate complements and (b)
leads to uniformly smaller complements.

—The costs for computing complements according to Laurent et al. [2001] are
exponential in the size of schema information, whereas they are polynomial
according to our new approach.

The remainder of this article is organized as follows. In Section 2, we introduce
the basic notions to be used throughout this text. In Section 3, we present the
main results of this article, namely expressions for the computation of “small”
complements for sets of views defined by renaming, join, selection, projection,
and union. We also study the complexity of constructing the complementary
expressions and show it to be polynomial in the size of schema information.
We discuss a variety of related work and also applications in Section 4, and we
conclude in Section 5.

2. BACKGROUND AND NOTATION

In this article we consider relational databases and relational views with set
semantics. We assume the reader to be familiar with the relational algebra (see,
e.g., Abiteboul et al. [1995], Silberschatz et al. [2002], and Vossen [2000]) and
recall basic notions only briefly while fixing our notation.

2.1 Relational Databases and Views

A relation schema R is defined by a name, a set of attributes, which is denoted by
attr(R), and a key dependency. We use key(R) (⊆attr(R)) to denote the unique
key of relation schema R, and we assume that no functional dependencies
except those implied by the key dependency hold for a given relation schema.
An instance r of relation schema R is a set of tuples over attr(R) that satisfies
the associated key dependency. A database schema D is defined by a name

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

178 • J. Lechtenbörger and G. Vossen

and a set of relation schemata.2 We may identify D with the set of its relation
schemata, that is, we may write D={R1, . . . , Rn} if R1, . . . , Rn are the relation
schemata of D. An instance of database schema D is a function d that maps
each relation schema R of D to an instance of R, denoted by d (R), such that
the key dependencies are satisfied.

Given a database schema D, a relational view V over D is defined by a name
and a relational expression, where only names of relation schemata of D occur.
We assume that every relational expression is composed of relation schema
names and the following basic operations: renaming (ρ f , where f is an injective
function over attribute names), selection (σφ , where φ is a selection condition),
projection (πX , where X is a set of attribute names), join (1), union (∪), and
difference (\). We use the notation View-name =df Expression to introduce a
view named View-name whose defining relational expression is Expression.

We note that each view is associated with a set of attributes, namely the at-
tributes of the relation computed by the view’s relational expression. Therefore,
a view can also be seen as a relation schema. (For simplicity, we assume that
no dependencies are associated with views.) In analogy to the notation used for
relation schemata, we use attr(V) to refer to the set of attributes associated
with view V .

Let D be a database schema, let d be an instance of D, and let V be a view
over D. Then the instance of V in d , denoted by V (d), is the relation over attr(V)
that is computed by evaluating the relational expression associated with V in
database instance d .

We next recall the definitions of containment and equivalence of relational
expressions (cf. Abiteboul et al. [1995] and Vossen [2000]).

Definition 2.1. Let D be a database schema. Let E1 and E2 be relational
expressions over D with attr(E1)=attr(E2).

(1) E1 is contained in E2, denoted by E1 ≤qc E2, if for all instances d of D we
have E1(d)⊆ E2(d).3

(2) E1 and E2 are equivalent, denoted by E1 ≈ E2, if E1 ≤qc E2 and E2 ≤qc E1.

Since queries and views are defined by relational expressions, Definition 2.1
immediately applies to queries and views. Similarly, the following notions are
defined for expressions but apply to queries and views as well.

A relational expression E (or a view or a query) over database schema D is
monotonic if we have E(d1)⊆ E(d2) for all instances d1 and d2 of D such that
d1⊆d2. (An instance d1 is contained in an instance d2, denoted by d1⊆d2, if
we have d1(R)⊆d2(R) for all relation schemata R of D.) Furthermore, it is
well known [Abiteboul et al. 1995; Sagiv and Yannakakis 1980] that equiva-
lence is decidable for relational expressions involving renaming, selection with
positive conjunctive selection condition, projection, join, and union and that

2We note that the computation of minimal complements in the presence of inter-relational depen-
dencies such as inclusion dependencies lies outside the scope of this paper. Hence, except for some
remarks at the end of Section 4 we assume that there are no inter-relational dependencies.
3The subscript qc stands for “query containment.” In Section 2.2, we introduce a second ordering
of views with respect to their information content, denoted by ≤ic; cf. Definition 2.4.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 179

such expressions are monotonic. Moreover, every expression involving renam-
ing, selection with positive conjunctive selection conditions, projection, join, and
union is equivalent to a so-called UPSJR expression, where renaming opera-
tions are applied first (if any), followed by join (if any), then selection (if any),
then projection (if any), and finally union (if any). Finally, PSJR (respectively
SJR) expressions form the subclass of UPSJR expressions that do not contain
union (respectively union and projection). Note that PSJR expressions are ex-
actly the conjunctive expressions [Abiteboul et al. 1995].

2.2 View Complements

A set V of views over database schema D expresses some, but usually not all
of the information contained in D. Informally, any set C of views over D that
expresses the information “missing” in V with respect to D is called a comple-
ment of V with respect to D. Bancilhon and Spyratos [1981] have introduced
the notion of complement in a formal framework where views are defined by
arbitrary functions. In our setting of relational views, we have the following
definition:

Definition 2.2. Let V be a set of views over D={R1, . . . , Rn}. A complement
of V (with respect to D) is a set C of views over D such that the following
holds: For every i= 1, . . . , n, there exists a relational expression Ei over views
in V ∪C only such that Ri ≈ Ei. In this case, we call the set of equivalences
Ri ≈ Ei, 1 ≤ i ≤ n, the view inverse defined by C.

If C contains exactly one view CR per base relation schema R ∈ D such that
attr(CR)=attr(R), then we call C a tally complement.

Roughly speaking, C is a complement of V if every instance of D can be
computed from the corresponding instances of V and C. Clearly, a complete
copy of all database relations is a trivial complement for every set of views.

Example 2.3. Consider a banking application where two relation schemata
contain account information, namely AccStatus dealing with current states of
accounts and AccProfit about measures rating the profitability of accounts:

—attr(AccStatus) = {AccountID, Day, Balance, NoOfTransactions, Creditlimit,
Interest},

—attr(AccProfit) = {AccountID, Day, Turnover, Profitability}.
Let D = {AccStatus, AccProfit}, and consider the following view Facts over D:

Facts =df AccStatus 1 AccProfit

Let V ={Facts}, and consider the views

—CAS =df AccStatus,
—CAP =df AccProfit,

which provide copies of relation schemata in D. Clearly, every instance of D can
be computed from instances of V and C={CAS, CAP}. Hence, C is a complement
of V with respect to D. Moreover, C contains exactly one complementary view

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

180 • J. Lechtenbörger and G. Vossen

for each base relation such that the sets of attributes of complementary view
and base relation are the same. Hence, C is a tally complement.

As the complete source information is a trivial complement for any given
view, a natural interest for “small” or even “minimal” complements arises. In-
deed, the following ordering of views was proposed by Bancilhon and Spyratos
[1981] to compare the information content, and thereby the size, of views.

Intuitively, a set V1 of views is smaller than a set V2 of views, if V1 does not
distinguish more database instances than V2 does. Formally, we have:

Definition 2.4. Let V1 and V2 be sets of views over D. V1 is smaller than V2,
denoted by V1 ≤ic V2, if V2(d1)=V2(d2) implies V1(d1)=V1(d2) for all instances
d1 and d2 of D. V1 is strictly smaller than V2, denoted by V1 <ic V2, if V1 ≤ic V2
and there are instances d1 and d2 of D such that V1(d1)=V1(d2) and V2(d1) 6=
V2(d2).

We recall from Bancilhon and Spyratos [1981] that the largest (sets of) views
with respect to the above view ordering are those whose associated functions
over instances are injective, such as complete copies of all relations, whereas the
smallest (sets of) views are those with constant functions, such as constantly
empty views.

Example 2.5. We continue our banking application and note that all at-
tributes of the relation schemata AccStatus and AccProfit occur in view Facts.
Now consider the following views over D:

C′AS =df AccStatus\πattr(AccStatus)(Facts)
C′AP =df AccProfit\πattr(AccProfit)(Facts)

Then C′ = {C′AS, C′AP} is a tally complement of V with respect to D. Indeed, the
view inverses, which allow to compute instances of D from instances of V and
C′, are given as follows:

AccStatus ≈ C′AS ∪πattr(AccStatus)(Facts)
AccProfit ≈ C′AP ∪πattr(AccProfit)(Facts)

We clearly have C′ ≤ic C, as C preserves all information from D. Moreover, we
even have C′ <ic C. Indeed, consider the following instances d1 and d2 of D.
Let d1 be the empty instance, and let d2 be an instance where each of both
relations contains exactly one tuple for the same account on the same day, say,
for an account whose AccountID is 1 on January 1, 2000.

We observe that Facts(d1) is empty, whereas Facts(d2) contains a single tuple
concerning the account whose AccountID is 1. Then we obtain C′(d1)=C′(d2)
(as both views are empty in both instances). Moreover, we have C(d1) 6= C(d2)
(as both views are empty in d1 whereas each of them contains a single tuple in
d2). Consequently, we have C′ <ic C.

The following proposition, which goes back to Bancilhon and Spyratos [1981]
(and is used in Laurent et al. [2001] as well), states a fundamental property of
complements. Indeed, given a set V of views over D, each complement C of V
sets up a one-to-one mapping from instances of D to instances of V ∪C.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 181

PROPOSITION 2.6. Let V and C be sets of views over D. If C is a complement
of V , then d 6= d ′ implies (V ∪C)(d) 6= (V ∪C)(d ′) for all instances d and d ′

of D.

The complements to be computed in this article exhibit a particular syntactic
form, where UPSJR expressions play a central role. The following definition
introduces this kind of complements, called super-key based complements.

Definition 2.7. Let V be a set of views over D. Then C is a super-key based
complement of V , if C is a complement of V such that the following properties
are all satisfied:

(1) The set C contains only views of the form

CX
R =df EX

R ,

where EX
R is equivalent to an expression of the form πX (R)\E X

R for R ∈ D,
a super-key X of R, and a UPSJR expression E X

R over V . In particular, for
every R ∈ D and every super-key X of R, the set C contains at most one
view of this form.

Given R ∈ D we say that the views CX
R are the (super-key based) comple-

mentary views for relation schema R and we use C[R] to denote this subset
of C.

(2) The view inverse for R ∈ D, is equivalent to an expression of the form

IX 1
R

(
CX 1

R , V
)

1 · · · 1 IX k
R

(
CX k

R , V
)
,

where C[R]={CX 1
R , . . . , CX k

R }, k ≥ 1, and IX i
R is a relational expression over

CX i
R and V such that πX i (R) ≈ IX i

R (CX i
R , V), 1 ≤ i ≤ k.

Example 2.8. In our banking application, we note that the views of the
above complements C and C′ satisfy the first condition of Definition 2.7. More-
over, as there is exactly one complementary view for each relation schema, the
join operation can be removed from the second condition of Definition 2.7; the
resulting condition is satisfied by the above view inverses. Hence, C and C′ are
super-key based complements.

The following comments concerning Definition 2.7 are apt. First, this defini-
tion generalizes the notion of complement introduced in Laurent et al. [2001] by
allowing complementary views to be defined on super-keys of relation schemata.
In contrast, complements of Laurent et al. [2001] are tally complements. Next,
following Sagiv and Yannakakis [1980] query containment is decidable for
UPSJR views, and the tableaux techniques of Sagiv and Yannakakis [1980] may
be applied to optimize the UPSJR subexpressions of super-key based comple-
mentary views. In particular, given a complementary view CX

R =df πX (R)\E X
R ,

these techniques allow us to detect whether πX (R) is contained in E X
R , that

is, whether CX
R is constantly empty and, hence, not needed for computing base

relations.
Finally, we point out that the second condition of Definition 2.7 may appear

redundant at first sight. However, the following example exhibits a complement
that satisfies only the first but not the second condition of Definition 2.7.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

182 • J. Lechtenbörger and G. Vossen

Example 2.9. Let D={R1, R2}, where attr(R1)=attr(R2). Consider views
V ={V1, V2} over D, where V1 =df R1 ∪ R2 and V2 =df R1 ∩ R2. Let C=
{CR1 , CR2}, where CR1 =df R1\V2 and CR2 =df ∅.

Then C is a complement of V , as we have R1 ≈ V2 ∪CR1 and R2 ≈ (V1\
(V2 ∪CR1))∪V2. Moreover, CR1 and CR2 satisfy the first condition of
Definition 2.7. However, the view inverse for R2 involves CR1 , which violates
the second condition of Definition 2.7. Consequently, C is not a super-key based
complement. Finally, R2 cannot be computed from the symmetric information
contained in the views alone. Hence, some complementary information is nec-
essary to compute R2 using views. As CR1 is the only nonempty complementary
view, every view inverse for R2 must involve CR1 .

3. COMPUTATION OF VIEW COMPLEMENTS

In this section, we present our main results concerning the computation of
view complements. To this end, we assume that every domain associated with
an attribute contains at least two values. We note that this assumption, which is
well known in database theory and trivially holds for any real-world database,
will be used in the proofs of Lemmata 3.9 and 3.10 to show certain minimality
results.

In order to prove minimality of complements, we first present an important
technical lemma, which provides a sufficient condition for minimality of certain
kinds of complements with respect to the view ordering “≤ic”. The lemma relies
on the following definition.

Definition 3.1. Let V be a set of views over D, and let C be a tally com-
plement of V . Given an instance d of D, the instance of D induced by C for d ,
denoted by dC(d), is the instance of D that maps R to relation CR(d), that is,
dC(d)=〈CR1 (d), . . . , CRn(d)〉.4

Definition 3.1 allows to interpret an instance C(d) of a tally complement in
a natural way as induced instance dC(d) of the database relations. The fol-
lowing lemma uses such induced instances to provide a sufficient condition for
minimality of C.

LEMMA 3.2. Let V be a set of views over D, and let C be a tally complement
of V . If

(1) V (dC(d))=∅ for all instances d of D and
(2) dC(d)=d for all instances d of D with V (d)=∅,
then C is a minimal complement with respect to <ic.

PROOF. Let C be a tally complement of V . Assume for the sake of a contra-
diction that C is not minimal, that is, that there is a complement C′ of V such
that C′ <ic C. By definition of “<ic” there are instances d1 and d2 of D such that
C(d1) 6= C(d2) and C′(d1)=C′(d2).

4To simplify notation concerning instances of databases as well as of sets of views we use angle
brackets to denote instances of databases (and views), if an arbitrary but fixed ordering of relation
schemata (and views) is understood.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 183

In this situation, we have d1 6= d2 (otherwise, we could not have C(d1) 6=
C(d2)) and dC(d1) 6= dC(d2) (as we have C(d1) 6= C(d2)). In addition, it is easy
to see that we also have V (d1) 6= V (d2). Indeed, as C′ is supposed to be a
complement, there are inverse expressions to compute d1 from V (d1) and C′(d1)
as well as d2 from V (d2) and C′(d2). As we have d1 6= d2 and C′(d1)=C′(d2), we
must have V (d1) 6= V (d2) by Proposition 2.6.

By precondition (1) we have V (dC(d1))=V (dC(d2))=∅. Thus, by precondition
(2), we find dC(dC(d1))=dC(d1) and dC(dC(d2))=dC(d2). The definition of dC
then implies C(dC(d1))=C(d1) and C(dC(d2))=C(d2), that is, C does neither
distinguish dC(d1) from d1 nor dC(d2) from d2.

Exploiting C′ <ic C we deduce that C′ does neither distinguish dC(d1) from
d1 nor dC(d2) from d2, that is, C′(dC(d1))=C′(d1) and C′(dC(d2))=C′(d2). Using
C′(d1)=C′(d2), we obtain C′(dC(d1))=C′(dC(d2)).

To summarize, we have constructed instances dC(d1) and dC(d2) of D such
that

(1) dC(d1) 6= dC(d2),
(2) V (dC(d1))=V (dC(d2)), and
(3) C′(dC(d1))=C′(dC(d2)).

Clearly, these three facts contradict Proposition 2.6 (i.e., V ∪C′ does not
contain enough information to distinguish dC(d1) and dC(d2)), showing that
C′ is not a complement of V .

3.1 Minimal Complements of SJR Views

The following theorem states how minimal complements for SJR views can
be computed, where the notation f −1 is used to denote inverses of renaming
functions.

THEOREM 3.3. Let V ={V1, . . . , Vm} be a set of SJR views over D={R1, . . . ,
Rn}, where each Vi ∈ V , 1 ≤ i ≤ m, has the following form:

Vi =df σφi (ρ fi,i1

(
Ri1) 1 · · · 1 ρ fi,ik

(Rik)
)

For R j ∈ D and Vi ∈V let view Ri
j be defined as follows, where attr(Ri

j)=
attr(R j):

Ri
j =df

∅ if R j does not occur in Vi,⋃
Ril = R j

ρ f −1
i,il

(π fi,il (attr(R j))(Vi)) otherwise. (1)

For R j ∈ D, let view R j be defined as follows:

R j =df

⋃
Vi∈V

Ri
j (2)

Then, the set of views C={CR1 , . . . , CRn}, where

CR j =df R j \R j , 1 ≤ j ≤ n, (3)

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

184 • J. Lechtenbörger and G. Vossen

is a super-key based and minimal complement of V . The view inverse is defined
as follows for R j ∈ D, 1 ≤ j ≤ n:

R j ≈ CR j ∪ R j . (4)

PROOF. We first show that C is indeed a complement of V , which is super-
key based; afterwards we prove minimality. To show that C is a complement,
we have to establish the inclusion

Ri
j ⊆ R j (5)

for R j ∈ D and Vi ∈ V . From (5), we then obtain R j ⊆ R j for all R j ∈ D,
which implies that Equivalence (4) is correct. Since (4) shows how to compute
all relations from V ∪C, C is a complement of V . Moreover, C is super-key based
by construction.

Thus, we need to verify (5). Let R j ∈ D and Vi ∈ V . If R j does not occur in
Vi, we have Ri

j =df ∅, and inclusion (5) holds. Therefore, assume that R j occurs
in Vi, say j = il for l ∈ [1, k]. We have to show the following inclusion:

ρ f −1
i,il

(
π fi,il (attr(R j))(Vi)

)⊆ R j . (6)

We first remark that inclusion (6) makes sense due to the assumption that
renaming functions are injective; hence, the expressions on the right- and left-
hand sides are associated with the same set of attributes, namely attr(R j). Now,
let d be an instance of D, and let

t ∈ ρ f −1
i,il

(
π fi,il (attr(R j))(Vi(d))

)
;

as we just observed, t is a tuple over attr(R j). We now use the definitions of
operations involved in ρ f −1

i,il
(π fi,il (attr(R j))(Vi)) to track down the origin of t.

By the definition of renaming, there is a tuple t ′ over fi,il (attr(R j)) in

π fi,il (attr(R j))(Vi(d))

such that t[A]= t ′[fi,il (A)], for all A ∈ attr(Ri). Then the definition of projec-
tion implies that there is a tuple t j ∈ Vi(d) such that t j [fi,il (attr(R j))]= t ′. We
next analyze the operations in Vi. By the definition of selection, t j satisfies the
condition φi, and we have

t j ∈ ρ fi,i1
(Ri1) 1 · · · 1 ρ fi,ik

(Rik).

By the definition of join, we then have

t j
[

fi,il (attr(R j))
] ∈ ρ fi,il

(Ril),

which implies t ′ ∈ ρ fi,il
(Ril). The properties of t ′ finally entail t ∈ Ril (= R j).

Thus, inclusion (6) holds, which concludes the proof that C is a complement
of V .

Concerning minimality of C we are going to apply Lemma 3.2. Hence, we
have to check conditions (1) and (2) of Lemma 3.2 against complements defined
by Eq. (3).

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 185

(1) Let d be an instance of D, and let dC(d) be the instance of D induced by C
for d . We have to show V (dC(d))=∅.

Let R j ∈ D. By inclusion (6), equality CR j (d)= R j (dC(d)), and Eq. (3) we
obtain

R j (dC(d))⊆ R j (dC(d))=CR j (d)⊆ R j (d). (7)

As SJR views are monotonic, we find Vi(dC(d))⊆Vi(d), which implies

R j (dC(d))⊆ R j (d). (8)

Then R j (d)∩CR j (d)=∅ and the equality R j (dC(d))=CR j (d) imply R j (d)∩
R j (dC(d))=∅. From the left-hand inclusion of (7), it follows that R j (d) ∩
R j (dC(d))=∅. In view of (8), we then must have R j (dC(d))=∅, which, by
definition of expression R j , can only be the case if V (dC(d))=∅.

(2) Let d be an instance of D such that V (d)=∅, and let R j ∈ D. We have
to show dC(d)=d . Obviously, we have R j (d)=∅, which implies CR j = R j ,
which in turn yields dC(d)=d .

An application of Lemma 3.2 concludes the proof.

Roughly, given a set V of SJR views, Theorem 3.3 produces a tally comple-
ment with one complementary view CR per base relation R, where the schema
of CR is equal to the schema of R and the instances of CR contain those tuples
of (instances of) R that do not appear in any view in V . Indeed, expression Ri

j
given by Eq. (1) represents that portion of R j which can be obtained from view
Vi, keeping in mind that R j can occur multiple times in Vi (under different re-
naming functions). Then, expression, R j given by Eq. (2) collects those portions
for all views in V , and complementary view CR j given by Eq. (3) covers those
tuples of R j that are not contained in R j , that is, that cannot be computed from
the views.

It is easily verified that the complementary expressions provided by
Theorem 3.3 are a generalization of those given by a similar result of Laurent
et al. [2001] for selection and join (without renaming). It is instructive to note
that the result of Laurent et al. [2001] shows minimality of the complement
with respect to query containment (and that their proof can be generalized
to views involving renaming), whereas we additionally have minimality with
respect to information content.

Example 3.4. Recall that in our banking application (introduced in
Example 2.3) V contains a single view, which is the join of two base relations,
that is, which is an SJR view. Hence, Theorem 3.3 is applicable. It is easy to
see that Eq. (3) leads to complement C′ above. Consequently, C′ is a minimal
complement.

The next example illustrates the handling of renaming according to
Theorem 3.3.

Example 3.5. Consider D={R1}, where R1(Parent, Child) collects names
of parents and their children, and views V ={V1, V2} over D, where

V1 =df σGrandparent=Paul(ρ f (R1) 1 R1)

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

186 • J. Lechtenbörger and G. Vossen

such that function f renames Parent into Grandparent and Child into Parent,
that is, V1 selects grandparents, parents, and children, where the grandparent
is Paul, and

V2 =df σChild=John(R1)

Sample instances d of D, V1(d) of V1, and V2(d) of V2 are as follows:

R1 Parent Child
Mary John
Paul John
John Peter
Fred Barney

V1 Grandparent Parent Child
Paul John Peter

V2 Parent Child
Mary John
Paul John

In accordance with Eq. (1), we have

R1
1 =df ρ f −1 (πGrandparent,Parent(V1))∪πParent,Child(V1),

where f −1 is the inverse of f , that is, f −1 renames Parent into Child and
Grandparent into Parent, and

R2
1 =df πParent,Child(V2).

Thus, in accordance with Eq. (2), we have

R1 =df R1
1 ∪ R2

1 .

Finally, in accordance with Eq. (3),

CR1 =df R1\R1

gives rise to a minimal complement C={CR1} of V with respect to D. Instance
CR1 (d) is shown next.

CR1 Parent Child
Fred Barney

3.2 Complements of PSJR Views

We next illustrate some complications in the computation of minimal comple-
ments in the presence of projections. Afterwards, we present our approach to the
computation of complements for PSJR views, which is based on the equations
given by Theorem 3.3, but which does not strive for minimality with respect to
information content.

Example 3.6. Consider a single view V =df πA(R) over D={R}, where
attr(R) = key(R)={A, B}. As we have noticed above, a copy of D is a trivial
complement for any set of views. Hence, C={CR}, where CR =df R, is a trivial

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 187

complement of V . (For simplicity, we use “V ” instead of “{V },” i.e., we implicitly
extend the notion of complement to single views.) However, this trivial comple-
ment is not the only relational complement possible and, in particular, not a
minimal one (as implied by Example 22.3.8 of Abiteboul et al. [1995]).

Next, let t0 be an arbitrary tuple over R. Then, C′ = {C′R}, where

C′R =df R\[{t0}\(πA(R\{t0}) 1 {t0})],
is a complement of V with respect to D, as the following computation of R from
V and C′ shows:

R ≈ C′R ∪ [(V 1 {t0})\(πA(C′R) 1 {t0})]
Moreover, we have C′<C, as C′R(∅)=C′R(〈{t0}〉)=∅, whereas CR(∅)=∅ 6= 〈{t0}〉=
CR(〈{t0}〉).

We remark that the following idea lies as the heart of the complement given
in Example 3.6: Let t0 be a fixed tuple over R. Then, we can construct an expres-
sion within which t0 is stored (via a constant relation) and which “recognizes”
instances r of R, where t0(A) occurs only once in column A (indeed, the subex-
pression {t0}\(πA(R\{t0}) 1 {t0}) of C′R is nonempty if and only if t0(A) occurs only
once in column A). For such relation instances we do not need to store t0 in the
complementary instance, as the A-value t0(A) occurs in the view instance of V
and tuple t0 is stored within the expression for C′R .

3.2.1 Why Minimality May Not Be An Issue. Based on the last remark,
we now observe that the complement of Example 3.6 is not minimal, as it can
be further reduced by “recognizing” finite functions in the following sense: In
the definition of C′R and in the computation of R we can replace the one-tuple
relation {t0} by any relation r0 that satisfies the functional dependency A→ B.
Clearly, the more tuples r0 contains the smaller the resulting complement gets.

However, the above complement does not seem natural for the following rea-
sons: First of all, the tuples that do not have to be stored in instances of the
complementary view C′R are still stored somewhere else, namely inside a con-
stant relation hidden in the expression C′R . This constant relation has to be
stored for every instance of R, even for the empty instance. Next, the comple-
ment in the above example is designed to “watch out” for a certain tuple, which
might never occur during the lifetime of the database. Therefore, it is question-
able whether the reduced information content of the complement pays off with
respect to the increased complexity of complementary views and view inverses.
Finally, the above complement violates the property of genericity, which cap-
tures the data independence principle for database queries [Aho and Ullman
1979; Chandra and Harel 1980].

Loosely speaking, a view is generic if it treats data values essentially as
uninterpreted objects (and, in particular, does not watch out for certain tuples).
Formally, a view is generic if it commutes with all permutations of the database
domain. Let A be an attribute. A mapping p : dom(A) → dom(A) is called a
permutation (of dom(A)), if p is bijective. We extend the notion of permutation
to database schemata in the natural way, and we say that p is a permutation of
D if p gives rise to a permutation for each domain associated with an attribute

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

188 • J. Lechtenbörger and G. Vossen

occurring in D. Moreover, given an instance d of D (or an instance V (d) for
some view V over D), the result of p applied to d, p(d), (or to V (d), p(V (d)))
is the instance where for each domain dom(A) associated with D the values of
dom(A) occurring in d (or in V (d)) are permuted according to the permutation
for dom(A) to which p gives rise.

Definition 3.7. Let V be a view over D. Then V is generic if we have
V (p(d))= p(V (d)) for all permutations p of D and instances d of D.

We believe that genericity is a desirable property for view complements, as
potential reductions in the view size should not depend on the instance-specific
occurrence of a finite number of constants. In the context of complements, we say
that a complement C is generic if all views in C and additionally the view inverse
defined by C are generic. (Note that genericity of the complement does not imply
genericity of the view inverse: Reconsider Example 3.6 with exchanged roles of
V and C, i.e., treat V as generic complement of view C′; clearly, any inverse must
deal with the constant tuple t0, i.e., cannot be generic.) It is straightforward
to verify that the complements produced by Theorem 3.3 are generic if the
underlying views V are.

However, restricting ourselves to generic complements in the current setting
again yields complements that are smaller than the trivial one, but which are
not useful in practice.

Example 3.8. Consider C′′ = {CB, CAB}, where

CB(r) =df

{
πB(r), if r =πB(r) 1 V (r)
∅, otherwise

and

CAB =df R\(V 1 CB).

Then C′′ is a complement of V as R ≈ CAB ∪ (V 1 CB). Moreover, it is easy to see
that C′′ is generic and that we have C′′ < C. We point out that C′′ is indeed a
relational complement, as the definition of CB is just a shorthand for

πB(r) 1 [{〈〉}\π∅(r\(πB(r) 1 V (r)))],

where {〈〉} denotes the non-empty relation over the empty set of attributes
(which is the neutral element with respect to join).

We note that the optimization concerning C′′ is based on the computation of
a lossless join (which degenerates to a Cartesian product) within base relation
instances: Even if there is no lossless join constraint in general, some of the
instances of D satisfy this constraint, which leads to the above reductions with
respect to information content. Thus, although C′′ is a generic complement, its
reduced size basically results from the satisfaction of a constraint that may
accidentally hold in particular instances. In practice, the exploitation of such
“random” constraints will lead to marginal reductions in the size of comple-
ment instances only, while the costs involved in using and maintaining the
complement (where each complementary view involves a Cartesian product)
are prohibitively expensive.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 189

Moreover, if a complement of V =df πA(R) is generic, then the reductions
illustrated in Example 3.6 can be applied to obtain smaller complements. Thus,
we have:

LEMMA 3.9. If a complement of view V =df πA(R) over D={R}, where
attr(R)={A, B}, is generic then it is not minimal with respect to ≤ic.

PROOF. Assume that C is a generic complement of V and consider the in-
stance r0={〈a0, b0〉} of R, where a0 6= b0. (Notice that such an instance exists
due to the assumption that domains contain at least two values.) As C is a
generic complement, the B-value b0 that is not visible in V (r0) must be visible
in C(r0) to compute r0 from V (r0) and C(r0), that is, we have C(r0) 6= ∅.

In the spirit of Example 3.6, one can design a nongeneric complement C0 to
“watch out” for the instance C(r0) in such a way that C0(r0) is empty:

C0(r) =df

{
∅, if C(r)=C(r0) and V (r)=V (r0)

C(r), otherwise.

Clearly, we have C0 <ic C. (Note that C0(∅)=C0(r0)=∅=C(∅) 6= C(r0).) More-
over, C0 is a complement as we can compute C from V and C0 (and then R from
V and C, which concludes the proof):

C(r)=
{

C(r0), if C0(r)=∅ and V (r)=V (r0)
C0(r), otherwise.

Roughly speaking, Lemma 3.9 implies that minimal complements of V =df
πA(R) must be unnatural objects, which violate the property of genericity. More-
over, the above examples indicate that a complement of V that is smaller than
the trivial one may not be useful in practice. Therefore, the question arises how
such undesirable complements can be avoided. In this respect, we observe that
the undesirable, “optimized” complements C′ and C′′ above are not super-key
based complements according to Definition 2.7. In fact, this observation is not
just coincidence:

LEMMA 3.10. The trivial complement C={CR =df R} is minimal among
super-key based complements for V =df πA(R), that is, if C′ is a super-key based
complement for V , then we have C ≤ic C′.

PROOF. Assume for the sake of a contradiction that C′ is a super-key based
complement of V such that C′ <ic C. Let r1 and r2 be instances of R such that
C′(r1)=C′(r2) and C(r1) 6= C(r2). As C={CR} is just a copy of D={R}, we have
CR(r1)= r1 6= r2=CR(r2). As C′ is a super-key based complement and as the
key of R is the trivial one, C′ contains a single view, say C′R . Clearly, C′R is not
an empty view (as, e.g., the instances {(a0, b0)} and {(a0, b1)} of R, which are
not distinguished by V , must be distinguished by any complement). Hence, we
have C′R ≈ R\E, where E is a UPSJR expression over V . In particular, we
obtain C′R ⊆ R. Hence, we have C′R(r1)=C′R(r2)⊆ r1 and C′R(r1)=C′R(r2)⊆ r2.
Due to r1 6= r2, at least one of the previous inclusions must be strict, say
C′R(r1)=C′R(r2) $ r1.

Without loss of generality assume that there is t0 ∈ r1\C′R(r1). Consider an
instance r3 of R such that V (r3)=V (r1), t0 ∈ r3, and t1 ∈ r3, where t1 6= t0 and

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

190 • J. Lechtenbörger and G. Vossen

t0(A)= t1(A). (Notice that such an instance exists due to the assumption that
domains contain at least two values.) Moreover, consider r4= r3\{t0}. Then, we
have V (r1)=V (r3)=V (r4). Hence, E yields the same result r5 for these three
view instances. In particular, as t0 /∈ C′R(r1) we have t0 ∈ r5. Consequently, we
deduce t0 /∈ C′R(r3)=C′R(r4). To summarize, r3 and r4 are relation instances such
that

—r3 6= r4,
—V (r3)=V (r4),
—C′R(r3)=C′R(r4),

which contradicts Proposition 2.6 and concludes the proof, showing that C is
minimal among super-key based complements.

As C is the trivial complement (which implies C′ ≤ic C for any complement
C′), Lemma 3.10 can be interpreted as follows: Among the super-key based
complements, there is only one complement for V =πA(R) (up to equivalence),
namely the trivial one.

3.2.2 Why Super-Key Based Complements Are Good for Projections. In
light of the above results, we argue that it does not always make sense to look
for minimal complements, in particular if projections are involved. Instead,
we pursue a more pragmatic approach, which is based on the computation of
super-key based complements and takes advantage of key constraints in the
computation of complements for views involving projections. The key idea in
the following is that projections that preserve keys of relation schemata may
permit the computation of lossless joins, an observation that has been made
by Honeyman [1980] in an entirely different context and that has lead to the
notion of an extension join.

Example 3.11. Let D={R}, where attr(R)={A, B, C} and key(R)={A}.
Let V1 =df πAB(R) and V ={V1}. Since V1 preserves the key of R, we have
a lossless join R ≈ V1 1πAC(R). Hence, C={CAC

R =df πAC(R)} is a complement
of V . Moreover, it is easy to see that C is strictly smaller than the trivial com-
plement and that C is super-key based.

Let D be a set of relation schemata, and let V be a set of PSJR views
over D. Our goal is to compute complements such as the one of Example 3.11
based on the equations provided by Theorem 3.3, although the latter does not
take projections into account. The roadmap is as follows: We first perform a
schema transformation on D which preserves the information content of D
and builds a “virtual database” Dv, where each relation schema either has a
trivial key or contains exactly one non-key attribute in addition to the key.
(We call this a virtual database, because we only make use of the expressions
involved in this database, but we never store any of its parts.) Afterwards,
we rewrite V over Dv and obtain a set V v of PSJR views over Dv. Then, by
applying a variant of Theorem 3.3 to Dv, we obtain a super-key based com-
plement Cv of V with respect to Dv (cf. Theorem 3.17). It turns out that Cv

is also a complement of V with respect to D (cf. Corollary 3.18) and that

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 191

Cv gives rise to a super-key based complement C of V with respect to D (cf.
Corollary 3.19).

Definition 3.12. Let D be a database schema. Let Dt ⊆ D be a set of views
that contains copies of those relation schemata that have less than two non-key
attributes, that is,

Dt =
{

Rattr(R) =df R | R ∈ D ∧ |attr(R)| − |key(R)| < 2
}
.

Let Dn= D\Dt , and let Dv
n be the set of views that is obtained by creating

|attr(R)|− |key(R)| projection views for R ∈ Dn, where each projection contains
the key of R and a single non-key attribute, that is,

Dv
n={R X =df πX (R) | R ∈ Dn ∧ key(R) $ X ⊆attr(R) ∧ |X | − |key(R)| =1}.

Let Dv= Dt ∪ Dv
n. We call the set of views Dv the virtual database for D. More-

over, for R ∈ D we refer to the expressions in Dv that involve R as the virtual
relations for R.

We first verify that the information content of a set of relation schemata is
preserved in its virtual database.

LEMMA 3.13. Let D be a database schema, and let Dv be the virtual database
for D. Then D ≤ic Dv.

PROOF. We show that D can be computed from Dv, from which the claim
follows. Let R ∈ D. If R has a less than two non-key attributes then a copy
of R is contained in Dv. Hence, R can be computed from Dv. Otherwise, we
have n= |attr(R)| − |key(R)| ≥ 2, and Dv contains n projections of the form
πX i (R), where key(R)⊆ X i, 1 ≤ i ≤ n. Therefore, we have a lossless join R ≈
πX 1 (R) 1 · · · 1πX n(R), which concludes the proof.

Example 3.14. For D={R(A, B, C)} as in Example 3.11, we obtain
Dv={RAB =df πAB(R), RAC =df πAC(R)}. Moreover, RAB and RAC are the vir-
tual relations for R. As the key of R is contained in each projection, we have a
lossless join R ≈ RAB

1 RAC.

Next, we rewrite sets of views in terms of virtual databases. As we have
explained in Section 2.1, a view can be regarded as a relation schema, and a
view instance is just a relation instance. Based on this point of view, in the
following definition, the set of views defining the virtual database is treated as
a set of relation schemata.

Definition 3.15. Let D be a database schema with virtual database Dv, and
let V be a set of PSJR views over D. Then the rewriting of V over Dv, denoted
by V v, is a set of PSJR views over Dv that contains one view per view in V ,
where

(1) each reference to a relation schema R is replaced by a join of the virtual
relations for R and

(2) a renaming function, which is applied to R in the original view, is pushed
down to each virtual relation for R.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

192 • J. Lechtenbörger and G. Vossen

Example 3.16. Let V0 be a PSJR view, that is,

V0 =df πX i (σφi (ρ fi,i1
(Ri1) 1 · · · 1 ρ fi,ik

(Rik))).

Assume that there are nij virtual relations for Rij . Then, in a first step, we
obtain:

πX i

(
σφi

(
ρ fi,i1

(
R1

i1 1 · · · 1 R
ni1
i1

)
1 · · · 1 ρ fi,ik

(
R1

ik 1 · · · 1 R
nik
ik

)))
Afterwards, by pushing down renaming functions, we obtain the rewriting of
V0:

πX i

(
σφi

(
ρ fi,i1

(
R1

i1

)
1 · · · 1 ρ fi,i1

(
R

ni1
i1

)
1 · · · 1 ρ fi,ik

(
R1

ik

)
1 · · · 1 ρ fi,ik

(
R

nik
ik

)))
.

Given a set of PSJR views V over D and its virtual database Dv, the following
Theorem 3.17 formalizes how a complement of V with respect to Dv can be
computed using the rewriting of V over Dv.

THEOREM 3.17. Let D be a database schema with virtual database Dv=
{R1, . . . , Rn}, and let V be a set of PSJR views over D. Let V v be the rewriting
of V over Dv, where each V v

i ∈ V v, which is the rewriting of Vi ∈ V , has the
following form:

V v
i =df πX i

(
σφi

(
ρ fi,i1

(Ri1) 1 · · · 1 ρ fi,ik
(Rik)

))
For each R j ∈ Dv and each Vi ∈ V let view Ri

j be defined as follows, where

attr(Ri
j)=attr(R j):

Ri
j =df

∅ if R j does not occur in V v

i ,⋃
Ril = R j

fi,il (attr(R j))⊆ X i

ρ f −1
i,il

(π fi,il (attr(R j))(Vi)) otherwise. (9)

For R j ∈ Dv let view R j be defined as follows:

R j =df

⋃
Vi∈V

Ri
j . (10)

Then the set of views Cv={CR1 , . . . , CRn}, where

CR j =df R j \R j , 1 ≤ j ≤ n, (11)

is a super-key based complement of V with respect to Dv. The view inverse is
defined as follows for R j ∈ Dv:

R j ≈ CR j ∪ R j . (12)

PROOF. To show that Cv is a complement of V , we first emphasize that the
expressions given by Eq. (9) are not defined in terms of rewritten views in V v

but in terms of the original views V . Indeed, given a view Vi ∈ V and a virtual
relation R j the rewritten view V v

i is only used to determine whether X i(=
attr(Vi)=attr(V v

i)) contains all of R j ’s attributes (possibly in renamed form). If
X i does contain all of R j ’s attributes then the expression ρ f −1

i,il
(π fi,il (attr(R j))(Vi)) is

used to extract that portion of the instance of R j that is preserved in an instance

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 193

of Vi, just as the same expression is used in Theorem 3.3. Hence, exactly as in
the proof of Theorem 3.3, Eq. (9) defines an expression Ri

j such that Ri
j ⊆ R j ,

which shows that Cv is a complement of V with respect to Dv. Finally, Cv is
super-key based by construction.

The reader is encouraged to compare the expressions given by Theorem 3.17
with those given by Theorem 3.3 above for SJR views, keeping in mind that
base relations in Theorem 3.3 correspond to virtual relations in Theorem 3.17. It
turns out that only minor modifications concerning expression Ri

j are necessary
to deal with PSJR views based on the expressions given by Theorem 3.3: While
in the case of an SJR view Vi either all attributes of base relation R j occur in
the view (possibly in renamed form) or none of them, in case of a PSJR view
some attributes may be projected away. Thus, in order to compute a “small”
complementary views, the key issue is to identify those views that preserve a
“useful” sets of attributes. Based on the intuition provided by Examples 3.11
and 3.14 we make use of those views that preserve one or more virtual relations,
that is, that preserve super-keys of base relations. More precisely, expression
Ri

j makes use of those original views Vi in V that preserve all the attributes
of one or more virtual relations R j by a syntactic check involving the rewriting
V v

i of Vi over Dv.

COROLLARY 3.18. Let D, V , Dv, V v, and Cv be as in Theorem 3.17. Then Cv

is a complement of V with respect to D.

PROOF. By Theorem 3.17, Cv is a complement of V with respect to Dv. As
the proof of Lemma 3.13 shows how D can be computed relationally from Dv,
Cv is also a complement of V with respect to D.

COROLLARY 3.19. Let D, V , Dv, V v, and Cv be as in Theorem 3.17. Let C be
the set of views over D that is obtained from Cv by replacing each reference to a
virtual relation R ′ with the view definition of R ′, that is,

C={CX
R =df πX (R)\R ′ | (∃CR ′ =df R ′\R ′ ∈ Cv)

R ′ is a virtual relation for R ∧ attr(R ′)= X
}
.

Then C is a super-key based complement of V with respect to D. Moreover, if
R X 1

j , . . . , R X n
j are the virtual relations for R j ∈ D, where R X i

j ≈ CR X i
j
∪ R X i

j is
the view inverse for R X i

j given by Equivalence (12), then the view inverse for R j
is defined as follows:

R j ≈
(

CR
X 1
j
∪ R X 1

j

)
1 · · · 1

(
CR X n

j
∪ R X n

j

)
. (13)

PROOF. We recall that the virtual relations for relation schema R are just
projections over R. Hence, the information content of C agrees with the informa-
tion content of Cv. Consequently, as Cv is a complement of V by Corollary 3.18,
C is also a complement of V . Furthermore, it is easy to see that Equivalence
(13) is correct (as all joins are key-based). Finally, C is super-key based by
construction.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

194 • J. Lechtenbörger and G. Vossen

We emphasize that all join operations involved in the view inverses given by
Equivalence (13) are extension joins and hence performed along keys; conse-
quently, they can be computed using efficient algorithms [Honeyman 1980].

Example 3.20. Consider D={R(A, B, C, D, E)} and views V ={V1, V2}
over D, where V1 =df πABC(σφ(R)) and V2 =df πAB(R). Then, the virtual
database Dv is given by the following views over D:

— RAB =df πAB(R),
— RAC =df πAC(R),
— R AD =df πAD(R),
— R AE =df πAE (R).

The rewriting V v of V over Dv is given by the following views:

—V v
1 =df πABC(σφ(RAB

1 RAC
1 R AD

1 R AE))
—V v

2 =df πAB(RAB
1 RAC

1 R AD
1 R AE)

In this setting, Eq. (11) of Theorem 3.17 produces the complementary views

CRAB =df RAB\(πAB(V1)∪πAB(V2)),

CRAC =df RAC\πAC(V1),

CR AD =df R AD,
CR AE =df R AE ,

which—according to Equivalence (12)—allow to compute the virtual relations
using the following inverses:

RAB ≈ CRAB ∪ (πAB(V1)∪πAB(V2)),

RAC ≈ CRAC ∪πAC(V1),

R AD ≈ CR AD ,
R AE ≈ CR AE .

Next Corollary 3.18 states that Cv={CRAB , CRAC , CR AD , CR AE }, which is obvi-
ously a complement of V with respect to Dv, is a complement of V with re-
spect to D. Indeed, Corollary 3.19 produces the super-key based complement
C={CAB

R , CAC
R , CAD

R , CAE
R } of V with respect to D, where

CAB
R =df πAB(R)\(πAB(V1)∪πAB(V2)),

CAC
R =df πAC(R)\πAC(V1),

CAD
R =df πAD(R),

CAE
R =df πAE (R).

Moreover, according to Equivalence (13) the view inverse for R is given by:

R ≈ (CAB
R ∪ (πAB(V1)∪πAB(V2))

)
1
(
CAC

R ∪πAC(V1)
)

1 CAD
R 1 CAE

R

We observe from Example 3.20 that Theorem 3.17 and Corollary 3.19 may
eventually generate a large number of complementary views for a single rela-
tion schema, where each view has a “small” schema. To be precise, for every

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 195

relation schema R we generate min{1, |attr(R)| − |key(R)|} complementary
views whose schemata contain |key(R)| + 1 attributes each. Clearly, the view
inverse for R then involves min{0, |attr(R)| − |key(R)| − 1} joins. Furthermore,
based on the expressions of Example 3.20 it requires little thought to see that
some of the joins involved can be avoided.

Example 3.21. In continuation of the previous example, consider the views

CAB
R =df πAB(R)\(πAB(V1)∪πAB(V2)),

CAC
R =df πAC(R)\πAC(V1), and

CADE
R =df πADE(R)

that form a complement C′ of V as a view inverse for R is given by

R ≈ (CAB
R ∪ (πAB(V1)∪πAB(V2))

)
1
(
CAC

R ∪πAC(V1)
)

1 CADE
R ,

which saves one join in comparison to the above inverse for C.
Notice that both complements have the same information content, while

query processing costs associated with the inverse of C′ are reduced.

To generalize the idea for the improvement in the previous example, we recall
from Definition 2.7 that, given a complement C and relation R, we use C[R] to
denote those complementary views in C whose definition is equivalent to the
form πX (R)\E for X ⊆attr(R) and an arbitrary expression E. Now, in order to
reduce the number of joins involved in view inverses given by Corollary 3.19,
we have to identify those complementary views in C[R]⊆C (where C is the
complement for a set V of PSJR views given by Corollary 3.19) that can be
“combined” into a single one. For this purpose, we use P(C[R]) to denote the
coarsest partitioning {C[R]1, . . . , C[R]k(R)} of C[R] such that if one view in C[R]i
accesses a view Vj ∈ V within a subexpression ρ f −1

ji
(π f ji (X)(Vj)) then all views

in C[R]i access Vj within a subexpression ρ f −1
ji

(π f ji (X ′)(Vj)) (where the same
renaming function is used but the set of projected attributes may differ), 1 ≤
i ≤ k(R). The complementary views in each set of the partitioning P(C[R]) will
then be combined into a single complementary view.

THEOREM 3.22. Let D, V , and C be as in Corollary 3.19. Given R ∈ D, let
P(C[R])={C[R]1, . . . , C[R]k(R)}.

For i ∈ [1, k(R)], let C[R]i ={CX i1
R , . . . , C

X ini
R }, where

C
X il
R =df πX il

(R)\
(
ρ f −1

j1

(
π f j1 (X il)(Vj1)

)
∪ · · · ∪ ρ f −1

jci

(
π f jci

(X il)
(
Vjci

)))
,

for ci ≥ 1 and 1 ≤ l ≤ ni, and let

X R,i =
ni⋃

l=1

X il .

For i ∈ [1, k(R)] define view R X R,i as follows:

R X R,i =df

(
ρ f −1

j1

(
π f j1 (X R,i)(Vj1)

)
∪ · · · ∪ ρ f −1

jci

(
π f jci

(X R,i)
(
Vjci

)))
(14)

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

196 • J. Lechtenbörger and G. Vossen

For i ∈ [1, k(R)], define view CX R,i
R as follows:

CX R,i
R =df πX R,i (R)\R X R,i (15)

Then, the set of views over D defined by Eq. (15) for all R ∈ D and i ∈ [1, k(R)] is
a super-key based complement of V with respect to D. The view inverse is defined
as follows for R ∈ D:

R ≈ (CX R,1
R ∪ R X R,1

)
1 · · · 1

(
CX R,k(R)

R ∪ R X R,k(R)
)

(16)

To prepare the proof of the above theorem, we first state and prove a technical
lemma.

LEMMA 3.23. Let D be a set of relation schemata, let R ∈ D, and let V1 and
V2 be PSJR views over D such that ρ f (R) occurs as subexpression in V1 and V2.
Moreover, let key(R)⊆ X i ⊆attr(R), i= 1, 2. If f (X i)⊆attr(Vj), i, j = 1, 2, then

ρ f −1

(
π f (X 1 ∪ X 2)(V1)

)∪ ρ f −1

(
π f (X 1 ∪ X 2)(V2)

)
≈ (

ρ f −1

(
π f (X 1)(V1)

)∪ ρ f −1

(
π f (X 1)(V2)

))
(17)

1
(
ρ f −1

(
π f (X 2)(V1)

)∪ ρ f −1

(
π f (X 2)(V2)

))
.

PROOF. We first show some basic properties of the subexpressions involved
in Equivalence (17). Afterwards, we use these properties to show both inclusions
of the equivalence. To simplify notation, let

EX (Vi) =df ρ f −1

(
π f (X)(Vi)

)
,

where f (X)⊆attr(Vi) and i= 1, 2, that is, Equivalence (17) becomes:

EX 1 ∪ X 2 (V1)∪ EX 1 ∪ X 2 (V2)
≈ (EX 1 (V1)∪ EX 1 (V2)) 1 (EX 2 (V1)∪ EX 2 (V2)) (18)

As in the proof of Theorem 3.3, we have EX i (Vj)⊆πX i (R), i, j = 1, 2. As X 1 and
X 2 contain the key of R we can deduce:

EX 1 ∪ X 2 (Vi) ≈ EX 1 (Vi) 1 EX 2 (Vi), i= 1, 2 (19)

Using Equivalence (19), we have the following equivalence concerning the left-
hand side of Equivalence (18):

EX 1 ∪ X 2 (V1)∪ EX 1 ∪ X 2 (V2) ≈ (EX 1 (V1) 1 EX 2 (V1))∪ (EX 1 (V2) 1 EX 2 (V2)) (20)

As join distributes over union, for the right hand side of Equivalence (18) we
have:

(EX 1 (V1)∪ EX 1 (V2)) 1 (EX 2 (V1)∪ EX 2 (V2))
≈ (EX 1 (V1) 1 EX 2 (V1))∪ (EX 1 (V1) 1 EX 2 (V2)) (21)
∪ (EX 1 (V2) 1 EX 2 (V1))∪ (EX 1 (V2) 1 EX 2 (V2))

Now, from Equivalences (20) and (21), we obtain the first inclusion:

EX 1 ∪ X 2 (V1)∪ EX 1 ∪ X 2 (V2)⊆ (EX 1 (V1)∪ EX 1 (V2)) 1 (EX 2 (V1)∪ EX 2 (V2))

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 197

Concerning the other inclusion, based on Equivalence (20), we have to show:

(EX 1 (V1) 1 EX 2 (V2))∪ (EX 1 (V2) 1 EX 2 (V1))⊆ EX 1 ∪ X 2 (V1)∪ EX 1 ∪ X 2 (V2) (22)

To this end, consider an instance d of D and a tuple t in the instance of the left
expression in Inclusion (22), that is, in

(EX 1 (Vi) 1 EX 2 (Vj))(d),

where i, j = 1, 2 such that i 6= j . Without loss of generality let i= 1, j = 2 (a
symmetric argument holds for the case i= 2, j = 1). We show that t is contained
in the instance

(EX 1 ∪ X 2 (V1))(d)= (EX 1 (V1) 1 EX 2 (V1))(d),

(note that the choice of V1 in this equation is arbitrary; we could equally
well use V2 here) from which Inclusion (22) follows. From EX i (Vj)⊆πX i (R),
i, j = 1, 2, and key(R)⊆ X 1 ∩ X 2 we deduce t ∈ πX 1 ∪ X 2 (R(d)). As key(R)⊆ X 1
and X 1 ∪ X 2=attr(EX 1 ∪ X 2 (V1)), we have

t ∈ (EX 1 (V1) 1 EX 2 (V1))(d),

which concludes the proof.

PROOF OF THEOREM 3.22. We have to show that Equivalence (16) is correct,
which then implies that the set of views defined by Eq. (15) is a complement of
V with respect to D. Moreover, by construction this complement is super-key
based.

We note that Equivalence (16) is related to Equivalence (12) as follows: By
definition, each subexpression

CX R,i
R ∪ R X R,i

in Equivalence (16) replaces a join of ni ≥ 1 subexpressions of the form(
C

X i1
R ∪ R X i1

)
, . . . ,

(
C

X ini
R ∪ R X ini

)
in Equivalence (12) such that

C[R]i =
{

C
X i1
R , . . . , C

X ini
R

}
, and X R,i =

ni⋃
l=1

X il .

Our goal is to establish that this replacement of expressions is equivalence-
preserving, that is,

CX R,i
R ∪ R X R,i ≈

(
C

X i1
R ∪ R X i1

)
1 · · · 1

(
C

X ini
R ∪ R X ini

)
, (23)

which then allows to deduce correctness of Equivalence (16) from the correct-
ness of Equivalence (12). For this purpose, we verify

R X R,i ≈ R X i1 1 · · · 1 R X ini , (24)

which implies

R X R,i ⊆πX R,i (R). (25)

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

198 • J. Lechtenbörger and G. Vossen

(Indeed, as in the proof of Theorem 3.17 we have R X il ⊆πX il
(R), l ∈ [1, ni]. Thus,

Equivalence (24) andπX R,i (R) ≈ πX i1
(R) 1 · · · 1πX ini

(R) imply R X R,i ⊆πX R,i (R).)
Observing that

πX R,i (R) ≈ πX i1
(R) 1 · · · 1πX ini

(R)

≈
(

C
X i1
R ∪ R X i1

)
1 · · · 1

(
C

X ini
R ∪ R X ini

)
and

CX R,i
R =df πX R,i (R)\R X R,i ,

we then have Equivalence (23) as follows, where Inclusion (25) assures that
difference followed by union is idempotent:

CX R,i
R ∪ R X R,i ≈ (πX R,i (R)\R X R,i)∪ R X R,i

≈ πX R,i (R)

≈
(

C
X i1
R ∪ R X i1

)
1 · · · 1

(
C

X ini
R ∪ R X ini

)
Hence, it remains to verify Equivalence (24). Using the definitions for view
names in Equivalence (24) we have to verify:

ρ f −1
j1

(
π f j1 (X R,i)(Vj1)

)∪ · · · ∪ ρ f −1
jci

(
π f jci

(X R,i)
(
Vjci

))
≈ 1

ni
l=1

(
ρ f −1

j1

(
π f j1 (X il)(Vj1)

)∪ · · · ∪ ρ f −1
jci

(
π f jci

(X il)
(
Vjci

)))
Recalling X R,i =

⋃ni
l=1 X il , where key(R)⊆ X il , the claim now follows from

Lemma 3.23, which concludes the proof.

To end the discussion of complements for PSJR views, we exhibit two exam-
ples concerning Theorem 3.22, showing that some joins are indeed avoided, and
we note that, for this case, no previous results were known.

Example 3.24. For Example 3.20, it is easily verified that Theorem 3.22
produces complement C′ with the associated inverse that saves a join.

Example 3.25. Consider relation schemata D={R1, R2} and views
V ={V1, V2, V3} over D, where

— R1(A, B, C1, . . . , Cn),
— R2(D, A, E, F1, . . . , Fm),
—V1 =df πABDE (σφ1 (R1 1 R2)),
—V2 =df πADE (σφ2 (R2)),
—V3 =df πBC1 EG(σφ3 (R1 1 ρ f (R2))), where f renames D into C1 and A into G.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 199

Then Corollary 3.19 leads to the following complementary views, where the
view inverses for R1 and R2 involve n and m+ 1 joins, respectively:

CAB
R1
=df πAB(R1)\πAB(V1)

CAC1
R1
=df πAC1 (R1)

...
CACn

R1
=df πACn(R1)

CDA
R2
=df πDA(R2)\(πDA(V1)∪πDA(V2)∪ ρ f −1 (πC1G(V3)))

CDE
R2
=df πDE(R2)\(πDE(V1)∪πDE(V2)∪ ρ f −1 (πC1 E (V3)))

CDF1
R2
=df πDF1 (R2)

...
CDFm

R2
=df πDFm(R2).

Let C = {CAB
R1

, CAC1
R1

, . . . , CACn
R1

, CDA
R2

, CDE
R2

, CDF1
R2

, . . . , CDFm
R2
}. Using the notation of

Theorem 3.22, we have

—C[R1] = {CAB
R1

, CAC1
R1

, . . . , CACn
R1
} and

—C[R2]={CDA
R2

, CDE
R2

, CDF1
R2

, . . . , CDFm
R2
}.

The coarsest partitionings for both sets are given by:

C[R1]1 =
{

CAB
R1

}
C[R1]2 =

{
CAC1

R1
, . . . , CACn

R1

}
C[R2]1 =

{
CDA

R2
, CDE

R2

}
C[R2]2 =

{
CDF1

R2
, . . . , CDFm

R2

}
Thus, Theorem 3.22 leads to the following complementary views, where the
view inverses for R1 and R2 involve only a single join each:

CAB
R1
=df πAB(R1)\πAB(V1)

CAC1...Cn
R1

=df πAC1...Cn(R1)

CDAE
R2

=df πDAE (R2)\(πDAE (V1)∪πDAE (V2)∪ ρ f −1 (πC1 EG(V3)))

CDF1...Fm
R2

=df πDF1...Fm(R2)

3.3 Complements of UPSJR Views

Our next goal is to extend the computation of complements to views involving
union. Consider a view V =df R1 ∪ R2 and assume that there are selection con-
ditions φ1 and φ2 such that σφi (V) ≈ Ri, i= 1, 2. In such a situation, we clearly
do not need to store any complementary information because both relations can
be computed using selection. Indeed, even if such selection conditions do not
exist in the first place, we can enforce them by modifying the view definition to

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

200 • J. Lechtenbörger and G. Vossen

include a source identifier: By changing the definition of V to

(R1 1 {(1)})∪ (R2 1 {(2)}), (26)

where we assume {(1)} and {(2)} to be (constant) relations over a new schema
with a single attribute, say Source, there is no need for a complement, as the
relations can be computed from V as follows:

R1 ≈ πattr(R1)(σSource=1(V)), R2 ≈ πattr(R2)(σSource=2(V)).

We call union views of the form given by Expression (26) source-preserving
union views.

The following theorem formalizes the computation of complements for
source-preserving union views.

THEOREM 3.26. Let U ={U1, . . . , Um} be a set of UPSJR views over
D={R1, . . . , Rn}, where each U j ∈ U is a source-preserving union view of the
form

u j⋃
i=1

(Vji 1 {(i)})

such that each Vji is a PSJR view over D and {(i)} is a constant relation over
a new attribute Source. Let V ={V11 , . . . , V1u1

, . . . , Vm1 , . . . , Vmum
} and let CV be

the complement of V with respect to D in accordance with Theorem 3.22. Let C
be the set of views that is obtained from CV by replacing each reference to a view
Vji ∈ V with the expression πattr(Vji)(σSource=i(U j)). Then C is a super-key based
complement of U with respect to D. The view inverse for R ∈ D is defined by
a variant of Equivalence (16) of Theorem 3.22, where each reference to a view
Vji ∈ V is replaced with the expression πattr(Vji)(σSource=i(U j)).

PROOF. Due to the form of views in U , we have Vji ≈ πattr(Vji)(σSource=i(U j))
for all U j ∈ U . Hence, the view inverse defined by Equivalence (16) applied to
complementary views in CV gives the same result as the modified view inverse
applied to complementary views in C. Consequently, C is a complement of U .
By construction, C is super-key based.

Example 3.27. Consider a banking scenario where each branch of a bank
runs its own database to keep track of local customers. Let

D={db1.Customer, . . . , dbn.Customer}.
Suppose that the view

U1 =df

n⋃
i=1

(πX 1 (σφ(dbi.Customer)) 1 {(i)})

integrates an excerpt of this customer information. Let U ={U1}. Assume that
CustomerID is the key in each relation schema, that CustomerID ∈ X 1, and that
attr(db1.Customer)=attr(dbi.Customer), 1 ≤ i ≤ n. To simplify notation, let
X 2= (attr(db1.Customer)\X 1)∪ {CustomerID}.
ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 201

According to the notation of Theorem 3.26 we have V ={V11 , . . . , V1n}, where

V1i =df πX 1 (σφ(dbi.Customer))

is a PSJR view over D, 1 ≤ i ≤ n. Then, Theorem 3.22 produces the complement

CV =
{

CX 1
C1

, CX 2
C1

, . . . , CX 1
Cn

, CX 2
Cn

}
of V , where

CX 1
Ci
=df πX 1 (dbi.Customer)\πX 1 (V1i),

CX 2
Ci
=df πX 2 (dbi.Customer),

1 ≤ i ≤ n. The view inverse is given as follows for dbi.Customer ∈ D:

dbi.Customer ≈
(

CX 1
Ci
∪πX 1 (V1i)

)
1 CX 2

Ci

In this situation, Theorem 3.26 produces the complement

C=
{

C′X 1
C1

, CX 2
C1

, . . . , C′X 1
Cn

, CX 2
Cn

}
of V , where

C′X 1
Ci
=df πX 1 (dbi.Customer)\πX 1 (σSource=i(U1)).

Moreover, the view inverse is given as follows for dbi.Customer ∈ D:

dbi.Customer ≈
(

C′X 1
Ci
∪πX 1 (σSource=i(U1))

)
1 CX 2

Ci

3.4 Complexity Results

Theorem 3.3, Corollary 3.19, and Theorems 3.22 and 3.26 provide expres-
sions that form complements for various classes of views. In the following, we
study the cost of actually constructing these complements, and our aim is to
show that the complexity for the construction of complements is polynomial in
the size of the underlying relation and view schemata.

Theorem 3.3 provides expressions for a minimal complement of a set V of
SJR views. At the heart of this theorem lies the computation of the elementary
expressions Ri

j , one for each relation schema R j ∈ D and view Vi ∈ V . Obvi-
ously, there are |D| · |V | such expressions. Afterwards, these expressions are
combined into one complementary view for each relation schema. Therefore,
the complexity to construct the complement is polynomial in |D| · |V |.

Corollary 3.19 provides expressions for a complement of a set V of PSJR
views, based on the virtual database Dv for D. Here, a complementary view
is created for each relation schema in Dv. It is easy to see that the number
of attributes occurring in D, denoted by nD, provides a rough upper bound for
|Dv|. Thus, at most nD complementary views are created. Moreover, each of
these views can be constructed with a single scan over the views V , to check
whether a view Vi ∈ V pays a contribution or not. Therefore, the complexity to
construct the complement is polynomial in nD · |V |.

Based on Corollary 3.19, Theorem 3.22 provides an “optimized” complement,
where the number of complementary views and, hence, the number of joins

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

202 • J. Lechtenbörger and G. Vossen

involved in the view inverses is reduced. Thus, a construction of the optimized
complement can be performed as a post-processing step to the construction
associated with Corollary 3.19. For this purpose, the resulting complementary
views of Corollary 3.19, say C, have to be partitioned into sets that access the
same warehouse views according to a similar pattern (recall Theorem 3.22).
This can be achieved, for example, by comparing each view in C with every
other, which requires at most |C|2 steps. Keeping in mind that we have |C| ≤ nD
for results of Corollary 3.19, the construction of the partitioning is therefore
bounded above by n2

D. Afterwards, for each partition, a complementary view is
constructed. Clearly, there are at most |C| ≤ nD partitions, and the complexity to
construct each view is linear in the size of the partition, which in turn is bounded
above by |C| ≤ nD. Therefore, the complexity to construct the complement is
polynomial in nD · |V |.

Finally, Theorem 3.26 provides expressions for a complement of a set U of
source-preserving UPSJR views. For this purpose, each union view is first split
into its PSJR subexpressions, which leads to a set V of PSJR views that are
processed in accordance with Theorem 3.22. Afterwards, references to PSJR
views in V are replaced by selections over views in U , which requires a single
scan over the result of Theorem 3.22. Therefore, the complexity to construct the
complement is polynomial in nD · |V |.

To summarize, we have:

THEOREM 3.28. The construction of super-key based complements according
to Theorem 3.3, Corollary 3.19, Theorem 3.22, and Theorem 3.26 is polynomial
in the size of the underlying database schema and the view schemata as follows:

view type complexity polynomial in
SJR |D| · |V |

PSJR |attr(D)| · |V |
UPSJR |attr(D)| · |V |

4. DISCUSSION

In this section, we put our work in perspective by discussing a variety of related
work; we start by looking into the application of data warehouses and their
design, and we end with a remark on interrelational dependencies.

4.1 Complements and Self-Maintainability

View complements as discussed in this article can be exploited in the context of
data warehouses to guarantee certain desirable properties, so-called indepen-
dence properties [Laurent et al. 2001].

In short, from a technical point of view a data warehouse for one or more (op-
erational) data sources is a separate database consisting of a set of materialized
views that integrate data from the sources. For our purposes, we view a data
warehouse as a set V of views over base relation schemata D={R1, . . . Rn},
where different base relations may belong to different data sources. Now, it is
desirable to set up data warehouses in such a way that warehouse operations,
in particular its maintenance (i.e., the integration of new or updated source

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 203

data into the current warehouse instance), create little or no interferences
with transactions in the underlying data sources. Clearly, for proper ware-
house maintenance at least changes going on in the data sources have to be
reported to the data warehouse (online or periodically). As introduced in Gupta
et al. [1994], a data warehouse view V0 in V is called self-maintainable if new
data warehouse instances can be computed based on reported changes with-
out additional maintainance queries, and V is self-maintainable if all its views
are self-maintainable. It is easy to see that not every data warehouse is self-
maintainable in general [Gupta et al. 1994], but that every warehouse can be
made self-maintainable by adding a suitable amount of additional information
in terms of auxiliary views [Laurent et al. 2001; Quass et al. 1996].

Moreover, given a set O of queries and/or updates over base relations, a data
warehouse is independent with respect to O, (a) if the queries contained in O
can be answered from the warehouse (without access to database relations) and
(b) if—upon execution of the updates in O on the database—the warehouse
can be maintained, that is, brought to a new state that reflects the updated
database state, based on the update information contained in O and warehouse
views (without access to database relations). Clearly, a data warehouse that is
independent with respect to all database updates is self-maintainable.

The approach in Laurent et al. [2001] shows how a pre-existing warehouse
V can be made independent with respect to operations O by adding a suitable
portion of a view complement to V : Roughly, a complement C of V is computed
first. Then, the operations O are rewritten over V and C (which is possible by
using the view inverse associated with C). Finally, the complementary views
appearing in the rewritings of operations O are added as auxiliary views to the
original warehouse views V , which renders the data warehouse independent
with respect to O.

As the computation of complements in accordance with this article gener-
alizes the one of Laurent et al. [2001] by allowing a larger class of views, our
new results can immediately be used to apply the approach of Laurent et al.
[2001] for a larger class of data warehouses. Moreover, as our complements are,
in general, smaller than those of Laurent et al. [2001], independence can be
enforced at smaller storage costs.

We observe that the approach of Laurent et al. [2001] shows how to enforce
general independence properties for pre-existing data warehouses and that this
approach can be used for warehouse evolution when new query or update re-
quirements come up during warehouse operation.

Alternatively, when data warehouses are designed from scratch the situa-
tion is slightly different. Ideally [Golfarelli and Rizzi 1998, 1999], data ware-
house design proceeds—in the spirit of traditional database design—in a num-
ber of phases such as requirement analysis, conceptual design, logical design,
and physical design. In particular, query requirements are automatically sat-
isfied as a result of proper (conceptual) schema design, which implies that
the warehouse is independent with respect to all “important” queries (that
have been identified in the course of the requirements analysis). Thus, the
remaining task with respect to independence is to render the data warehouse
self-maintainable.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

204 • J. Lechtenbörger and G. Vossen

As explained in Lechtenbörger [2001], self-maintainability can be enforced in
the course of the logical design phase (where the conceptual schema is mapped
to a set of materialized views that implement the data warehouse) by (a) mod-
ifying some view definitions and (b) adding some complementary views. The
key insight of Lechtenbörger [2001] lies in novel necessary conditions for self-
maintainability of projection and join views: If a warehouse with a projection
of a base relation is self-maintainable, then it is possible to determine a du-
plicate count for each tuple in the projection instances; if a warehouse with
a join of two base relations is self-maintainable, then the information con-
tent of both relations is contained in the warehouse. Based on this insight,
self-maintainability can be guaranteed by modifying projection views to in-
clude key attributes (which implies that duplicate counts are constantly 1) and
adding complementary views for base relations mentioned in join views. (No-
tice that in case of projections [Laurent et al. 2001] adds complementary views
that include the original projections and the key, which leads to redundancy
among the complement and the projections. This redundancy is avoided by
modifying the projection views.) As a final remark, we note that union views
are always turned into source-preserving union views, which not only enforces
self-maintainability for data warehouses defined by UPSJR views but also eases
the task of lineage tracing [Cui and Widom 2001].

4.2 Other Related Work

The notion of relational view complement used in this paper derives directly
from the more general notion of view complement first introduced by Bancilhon
and Spyratos [1981], where views and complements were defined in terms of
arbitrary functions over instances. Thus, Definition 2.2 is a special case of the
definition of complement given in Bancilhon and Spyratos [1981]. Moreover, the
view ordering ≤ic is exactly the view ordering given in Bancilhon and Spyratos
[1981]. We note that Bancilhon and Spyratos have shown that complements
always exist, but that minimal complements are almost never unique (a min-
imal complement of a view V is unique if and only if V is trivial, that is, if V
is either constant or injective); however, the computation of complements was
not addressed in Bancilhon and Spyratos [1981].

The computation of complements for views defined by relational algebra
was first discussed by Cosmadakis and Papadimitriou [1984]. The approach of
Cosmadakis and Papadimitriou [1984] is restricted to the setting of a single
view defined by projection of a single relation, where arbitrary functional de-
pendencies may hold. The key result of Cosmadakis and Papadimitriou [1984]
states that even in this simple setting, finding a minimal complement (where
a “minimal” complement is a projection with as few attributes as possible such
that the view inverse is join) is NP-complete. This result does not carry over
to our setting, since we do not consider arbitrary functional dependencies, but
assume exactly one key to be declared for every relation schema; moreover, our
complements and inverses have a different form, and our notion of minimal-
ity is completely different. On the other hand, our approach allows to compute
complements for much larger classes of sets of views, and the above complexity

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 205

results show that the computation of complementary views is, roughly, polyno-
mial in schema information of the data sources and the warehouse views.

Keller and Ullman [1984] have considered database instances as finite power
sets and monotonic views over such database instances. In this setting, they
have shown that, if for a view V there is a complement C such that V and C
are independent, then C is unique. (Two views over D are independent if for
all instances V (d1) and C(d2) of V and C there is an instance d0 of D such
that V (d0)=V (d1) and C(d0)=C(d2).) We stress that the results of Keller and
Ullman [1984] do not carry over to our setting of super-key based complements
according to Definition 2.7, because these complements are not monotonic in
the sense of Keller and Ullman [1984] (they involve the difference operation
and only the subexpression following the difference operation is monotonic).
Finally, we note that the computation of complements was not addressed in
Keller and Ullman [1984].

Hegner [1994] has proposed a less constraining framework than Keller and
Ullman [1984] and considered database instances that are partially ordered
sets with least elements and views that are monotonic morphisms (i.e., func-
tions that preserve the least element and the partial order such that if the
database instance becomes smaller so does the instance of the view). Hegner
[1994] has shown that in this setting directly complemented views, that is,
views that are independent components of a decomposition of the database
schema, are unique if they exist and that the set of all complemented views
forms a Boolean algebra. Similarly to the case of Keller and Ullman [1984],
the results of Hegner [1994] do not apply to our framework, since we consider
complements involving the difference operation. Finally, we note that the com-
putation of complements was not addressed in Hegner [1994].

The expressions for the computation of super-key based complements given
by Theorem 3.3, Corollary 3.19, Theorem 3.22, and Theorem 3.26 extend the
results of Laurent et al. [2001] in several ways. First, complements according
to Laurent et al. [2001] contain exactly one complementary view CR per re-
lation schema R such that attr(R)=attr(CR), whereas in the present article
we allow multiple complementary views per relation schema R, where each
complementary view is defined on a sub-schema of R that includes the key of
R. In this way, we are able to generate smaller complements as we illustrate
below. Second, we consider larger classes of views in this article; in particu-
lar, renaming and union are outside the framework of Laurent et al. [2001].
Next, we consider a different view ordering here than in Laurent et al. [2001],
where query containment, ≤qc, is used to compare sets of views. The advantage
of comparing the size of views with respect to information content is that the
associated ordering ≤ic is immediately applicable to sets of views with arbi-
trary schemata, whereas query containment is restricted to pairs of views that
share the same schema. Finally, the complexity to construct complementary
views according to the expressions given in Laurent et al. [2001] is roughly ex-
ponential in the number of warehouse views. In contrast, we have seen above
that the computation of the expressions for Theorem 3.26 (which deals with the
largest class of views) is polynomial in the number of database attributes and
warehouse views. This surprising result is due to the fact that the computation

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

206 • J. Lechtenbörger and G. Vossen

of complements according to Laurent et al. [2001] includes an instance of the
minimal-set-cover problem (which is known to be NP-complete [Karp 1972]) to
determine a set VR of warehouse views that “covers” the schema of a relation
R, whereas in our approach every warehouse view that includes a key of R is
immediately used to reduce a complementary view on a sub-schema of R.

In Example 1.1, we have illustrated that the computation of complements
presented in this paper can be perceived as a combination of the approaches of
Cosmadakis and Papadimitriou [1984] and Laurent et al. [2001] which leads
to uniformly smaller views than in both previous approaches (at lower compu-
tational complexity as we have explained above). To be precise, given a single
projection view πX (R) defined over relation schema R (where all valid func-
tional dependencies are implied by a key dependency), Theorem 3.22 produces
exactly the minimal complement of Cosmadakis and Papadimitriou [1984], that
is, a second projection such that the list of projected attributes contains key(R)
and all of R ’s attributes that are missing from X . Furthermore, Theorem 3.22
clearly leads to complements that are equal to or smaller than those computed
in Laurent et al. [2001].

4.3 A Remark on Foreign Keys

As a final remark we note that the framework of Laurent et al. [2001] is based
on database schemata where foreign keys can be declared. As was pointed out
in Laurent et al. [2001], foreign keys imply the following kind of “optimization”
of complements: If two relations are joined along a foreign key (say, a join of
Employee(Id, DeptNo, . . .) and Department(DeptNo, . . .) along the foreign key
DeptNo) then the complementary view for the relation containing the foreign
key (i.e., the view for Employee) will be constantly empty (as every tuple of
this relation appears in the join). We observe that this “optimization” does not
require any special treatment; instead, it is automatically guaranteed by the
definition of complementary views (in our framework as well as in Laurent
et al. [2001]). In particular, Corollary 3.19, Theorem 3.22, and Theorem 3.26
still hold in the presence of inclusion dependencies. We point out, however, that
the minimality statement of Theorem 3.3 does not hold any longer if arbitrary
inclusion dependencies are allowed. To see this, consider D={R1, R2}, where
mutual inclusion dependencies are declared such that we have R1 ≈ R2, and
view V1 =df R1 over D. Clearly, in this situation the empty set of views is a (min-
imal) complement. However, Theorem 3.3 yields a non-empty complementary
view CR2 =df R2, which is not minimal.

5. CONCLUSIONS

We have presented expressions for the computation of complements for sets of
relational views. Importantly, we have shown the first minimality result con-
cerning complements for relational views with respect to information content
(Theorem 3.3). Moreover, we have given evidence that there is, in general, no
hope to compute minimal complements (within the relational algebra while
being useful in practice) if projection views are involved (Example 3.6); addi-
tionally, we have argued that it may not even be necessary to look for minimal

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

On the Computation of Relational View Complements • 207

complements in practice as they are not as useful as the simpler, yet non-
minimal super-key based complements (Lemmata 3.9, 3.10). Instead, we have
given expressions for the computation of reasonably small complements of a
large class of relational views (Theorem 3.26). Furthermore, we have shown
(Theorem 3.28) that the computation of view complements is actually feasible—
in spite of earlier complexity results [Cosmadakis and Papadimitriou 1984;
Laurent et al. 2001], which suggested the contrary.

We conclude with a brief indication of possible applications for view com-
plements as computed in this paper. First, view complements can be used to
determine view update translators as studied in Bancilhon and Spyratos [1981].
Roughly, the problem addressed is the following. If database users issue update
requests against views then these requests have to be translated into updates
on database relations. It turns out, however, that such translations may not
be unique and that different translations imply different update semantics.
The idea of Bancilhon and Spyratos [1981] is to assign a unique semantics
to view updates by choosing translations that leave a view complement un-
changed. Clearly, it is easier to find a smaller complement that is left unchanged
by updates than a larger one. Therefore, the refined expressions for comple-
ments given in this article enhance the chances to find translators for view
updates.

Second, as we have discussed in Section 4.1, complements have found major
applications in the area of data warehousing. We note that the applicability
of view complements is not restricted to the standard relational data model;
instead, de Amo and Halfeld Ferrari Alves [2000] show how to exploit comple-
ments to make temporal views over nontemporal sources self-maintainable.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees whose really careful
reading and constructive remarks have lead to a significant improvement of
the presentation.

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley, Reading,
Mass.

AHO, A. V. AND ULLMAN, J. D. 1979. The universality of data retrieval languages. In Proceedings
of the 6th Annual Principles of Programming Languages (POPL 1979). 110–120.

DE AMO, S. AND HALFELD FERRARI ALVES, M. 2000. Efficient maintenance of temporal data ware-
houses. In Proceedings of the 4th IDEAS. 188–196.

BANCILHON, F. AND SPYRATOS, N. 1981. Update semantics of relational views. ACM Trans. Datab.
Syst. 6, 557–575.

CHANDRA, A. K. AND HAREL, D. 1980. Computable queries for relational data bases. J. Comput.
Syst. Sci. 21, 156–178.

COSMADAKIS, S. S. AND PAPADIMITRIOU, C. H. 1984. Updates of relational views. J. ACM 31, 742–760.
CUI, Y. AND WIDOM, J. 2001. Lineage tracing for general data warehouse transformations. In Pro-

ceedings of the 27th VLDB. 471–480.
GOLFARELLI, M. AND RIZZI, S. 1998. A methodological framework for data warehousing design. In

Proceedings of the 1st ACM DOLAP Workshop. ACM, New York, 3–9.
GOLFARELLI, M. AND RIZZI, S. 1999. Designing the data warehouse: Key steps and crucial issues. J.

Comput. Sci. Inf. Manage. 2, 1–14.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

208 • J. Lechtenbörger and G. Vossen

GUPTA, A., JAGADISH, H. V., AND MUMICK, I. S. 1994. Data integration using self-maintainable views,
Technical Memorandum, AT&T Bell Laboratories, Nov.

HEGNER, S. J. 1994. Unique complements and decomposition of database schemata. J. Comput.
Syst. Sci. 48, 9–57.

HONEYMAN, P. 1980. Extension joins. In Proceedings of the 6th International Conference on Very
Large Data Bases (VLDB). 239–244.

KARP, R. M. 1972. Reducibility among combinatorial problems. In Complexity of Computer Com-
putations, R. E. Miller, Ed. Plenum Press, New York, 85–103.

KELLER, A. M. AND ULLMAN, J. D. 1984. On complementary and independent mappings on
databases. In Proceedings of the ACM SIGMOD. ACM, New York, 143–148.

LAURENT, D., LECHTENBÖRGER, J., SPYRATOS, N., AND VOSSEN, G. 2001. Monotonic complements for
independent data warehouses. VLDB J. 10, 295–315.

LECHTENBÖRGER, J. 2003. Data warehouse schema design. Ph.D. dissertation, University of
Muenster. Available as Vol. 79 in “Dissertationen zu Datenbanken und Informationssystemen,”
Akademische Verlagsgesellschaft Aka GmbH, Berlin, Germany, 2001. (Extended Abstract in Pro-
ceedings of the 10th Conference on Database Systems for Business, Technology and Web (BTW),
2003, 513–522).

QUASS, D., GUPTA, A., MUMICK, I. S., AND WIDOM, J. 1996. Making views self-maintainable for data
warehousing. In Proceedings of the 4th PDIS. 158–169.

SAGIV, Y. AND YANNAKAKIS, M. 1980. Equivalences among relational expressions with the union
and difference operators. J. ACM 27, 633–655.

SILBERSCHATZ, A., KORTH, H. F., AND SUDARSHAN, S. 2002. Database System Concepts, 4th ed.
McGraw-Hill, New York.

VOSSEN, G. 2000. Data Models, Database Languages and Database Management Systems, 4th ed.
(in German), Oldenbourg.

Received December 2001; revised December 2002; accepted March 2003

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

