A Unified Framework for Supporting Dynamic
Schema Evolution in Object Databases

Boualem Benatallah

Queensland University of Technology
2 George Street, Brisbane GPO BOX 2434, QLD 4001, Australia
boualem@icis.qut.edu.au

Abstract. This paper addresses the design of an integrated framework
for managing schema evolution. This framework is based on the adap-
tation and extension of two main schema evolution approaches, namely
schema modification and schema versioning. The proposed framework
provides an integrated environment to support different database evolu-
tion techniques (such as, modification and versions at the schema level,
conversion, object versioning, and screening at the instance level). We
introduce the concept of class/schema version pertinence enabling the
database administrator to judge the pertinence of versions with regard to
database applications. Finally, we propose a declarative language based
on OQL, the ODMG query language, that the user can use to guide
objects adaptation process when dealing with complex or application
specific schema updates.

1 Introduction

During a database life span, the schema is likely to undergo significant changes in
functional requirements (e.g., application domain change) and/or non functional
requirements (e.g., performance) [10]. A schema can be updated by adding, delet-
ing, or updating its constituents, such as attribute, method, class or inheritance
relationship [12]. When a schema has been changed, objects may be inconsistent
and programs may be incompatible with regard to the new schema. The sup-
port of schema evolution is the ability to allow changes of the structure and the
behavior of schema’s constituents without disturbing applications that are using
them. This type of consistency introduces two aspects: efficiency and durability.
The former relates to the fact that the mechanisms introduced, to apply the
changes to schema and propagate the effects on the schema and objects, should
operate efficiently in the sense that performance degradation is to be avoided.
The latter issue relates to the fact that these mechanisms must ensure some
degree of durability for stored information, i.e., avoid the loss of information.

1.1 Background

In this paper, we briefly overview the major approaches that are closely related
to the work presented in this paper, namely modification-based, versioning-based,
and view-based approaches [1,11].

J. Akoka et al. (Eds.): ER’99, LNCS 1728, pp. 16-30, 1999.
© Springer-Verlag Berlin Heidelberg 1999

A Unified Framework for Supporting Dynamic Schema Evolution 17

— In a modification-based approach [6,9], the new schema definition replaces
the old one. The conversion technique is used for object adaptation [6]. All
existing objects must be converted to objects fitting class definitions in the
new schema. The conversion may cause information loss. Another major
limitation of this approach is the incompatibility of old programs w.r.t the
new schema when conversion occurs.

— In a version-based approach [4,7,8,12], a schema update causes the derivation
of new versions of classes/schema. Old programs can continue to interact
with (old or new) objects in the database using the old schema, which has
been retained. In this approach, two techniques of object adaptation are
proposed in the literature: screening and object versioning.

1. In the first technique [3,12], an object is associated with the class ver-
sion under which the object is created. The representation of an object is
never restructured after its creation. The system is responsible for ensur-
ing access to old and new objects by programs. This technique supports
program compatibility w.r.t the schema. However, it has two major lim-
itations. The first limitation is the extra cost involved when objects are
accessed. The second limitation is the information loss. The value of an
added (respectively, deleted) attribute in an old (respectively, new) ob-
ject is always a default value (i.e., supplied by the system), because it
is impossible to restructure physically the value of an object after its
creation.

2. In the second technique, the derivation of a new version of a class, leads
to the creation of a new version of each object of the class that has been
versioned [4,7]. This technique resolves the problem of information loss,
by supporting many object versions. However, its main limitation is the
proliferation of the number of versions, due to the dynamic nature of
object oriented applications. This results in a considerable overhead on
the system, because the storage requirement for versions and the cost of
maintaining versions relationships, increase with the number of versions.

— Some proposals (e.g., [10,11,3]) suggest the use of the view-mechanism to
manage schema evolution. In this approach, a schema update is performed
by the creation of a view that simulates the semantics of this update. The
support that is provided for schema evolution by a view-based approach is
not sufficient. More specifically, this approach does not provide a satisfactory
solution for additive schema updates (i.e, updates requiring the reorganiza-
tion of the database by information addition), such as the addition of a new
attribute into the definition of a class. The information added by views (e.g,
a derived attribute) are derived from other information that exist already
in the database; whereas the information added by a schema update is in
general new and most of the time independent from existing information.

18 Boualem Benatallah

1.2 Contributions

This paper addresses the schema update problem by integrating modification
and versioning into a unified framework.

— Modification- and version-based mechanisms are complementary. A version-
based mechanism can be used to overcome the problem of information loss.
A modification-based mechanism can be used to control the proliferation of
the number of versions by limiting the number of versions to those that are
necessary.

— The existing approaches propose very primitive schema update languages.
In general, these languages provide a fixed set of operations with pre-defined
semantics. However, in some situations a schema update can be application
specific [5]. The support of application specific updates calls for an extensible
language that allows the user to specify on the fly, the desired semantic of a
schema update.

Our approach can be summarized as follows:

— When a schema update is accepted, this update is effectively performed by
either the modification of the schema or the generation of a new version of
the schema. In the absence of the user directive, each substractive update
(i.e, involves information deletion) will result in the generation of new version
and each non-substractive update will result in a modification.

— Regarding the issue of object adaptation, our approach is based on the eval-
uation of the pertinence of object versions availability. When an object o is
accessed under a version v of the schema, the system we propose checks if
the object o has a version under v, i.e, the extension of the class of o (which
is defined in v) contains a version of o. If not, a new version of o is generated.
This new version is physically stored only if its availability is important (e.g.,
for performance improvement). Otherwise, this version is calculated, mean-
ing that the version is available only during the period of use. To decide if an
object version is to be stored or calculated, we have introduced the concept
of class pertinence levels. A class may be pertinent or obsolete. It is pertinent
if it is defined in the most recent version of the schema or it is used in a
large number of applications. Otherwise, it is obsolete. Thus, the version of
the object o, under v, is stored only if the class of o is pertinent.

— Unlike existing systems, which provide a fixed set of operations with pre-
defined semantics, our approach provides an extensible language to support
application specific schema updates. This language allows users to describe
the relationships between the states of the database before and after the
schema update. We show that, a declarative language (OQL) embedded in
the primitives of our language, provides a full specification of a desired in-
stance adaptation.

The remainder of this paper is organized as follows. In section 2, we give
a brief overview of the version model that provides the basic concepts for our

A Unified Framework for Supporting Dynamic Schema Evolution 19

approach. Section 3 addresses the issue of instance adaptation. Section 4 presents
the language for specifying the semantic of a schema update. We then make some
concluding remarks in section 5.

2 Basic Concepts and Definitions

The version model used in our approach supports the following concepts: schema
version, object version and version binding. This section overviews these concepts
and more details can be found in [1]. An entity refers to either a schema or an ob-
ject of a database. At the system level, an entity is stored as a pair (eid,vers),
where eid is the entity identifier and vers is the set of identifiers of its versions.
The identifier of a version is also a pair (eid,num), where eid is the identifier of
the entity and num is the number that the system associates with the version, at
the time of its creation. The function VersSet (eid) returns the set of versions
of the entity eid.

2.1 Schema - Schema Version

A schema is associated with a set of versions which is organized in a sequence.
The first version is the root version. We designate the latest version of a schema
as the current version. A historical version of a schema is any version of the
schema which is not the current version. We use “current” or “historical” to
denote what we call the status of a schema version. A schema version is defined
as a triple (sid,num,val), where (sid,num) represents the version identifier
and val is its value. The value of a schema version is a set of persistent classes
related by aggregation and inheritance relationships.

We introduce two functions to manipulate schema versions. The function
SchVerClasses(s,n) returns the set of classes of the version number n of the
schema s. The function Current (s) returns the current version of s. We consider
one schema at a given time. Thus, a class is identified by its name and the number
of the schema version. A class is then represented as a pair (c,n), where c is
the class name and n is the schema version number.

2.2 Object - Object Version

An object is associated with a set of versions. Each version belongs to a different
version of the schema. An object version is defined as a triple (oid,num,val),
where oid is the object identifier, num is the version number, and val is the
version value. The object version is identified by the pair (oid,num). Since an
object has at most one version by class, num is the one of the corresponding class.
The value of an object version is an atomic domain element (e.g., integer) or
a constructed domain element (e.g., a tuple value). An object version is an
instance of a class. So, the extension of a class refers to the set of its associated
object versions.

20 Boualem Benatallah

We introduce two functions to manipulate object versions. The function
Objects(c,n) returns the set of objects associated with the class (c,n). The
function Ext (c,n) returns the set of instances of the class (c,n) (i.e., the exten-
sion of (c,n)). We also introduce three operations to manipulate object versions:
ObjectVersionCreation, Object VersionDerivation, and ObjectVersion-
Deletion.

ObjectVersionCreation (oid,cid): This operation creates the first version
of the object identified by oid. The identifier of this version is initialized
by the pair (oid,n), where n is the number of the class under which the
object is created. This class is identified by cid. The value of this version is
initialized by a default value which is conform to the type of the class cid.

ObjectVersionDerivation (oid, cidy, cids): The classes cidy and cids are
defined in two adjacent versions of the schema. This operation creates a
new version of the object identified by oid, as an instance of the class cids.
It is derived from the object version under the class cid;. The identifier of
this version is initialized by the pair (oid,n), where n is the number of
the class cids. The version value conforms to the type of the class cids. It
is derived from the object version value under the class cidy, by using the
default transformation mechanism [6].

ObjectVersionDeletion (vid): This operation deletes the object version
identified by vid. It triggers the update of the versions that reference the
deleted version. This update replaces each reference to the (deleted) version
by the default value nil (or by an object version whose type is a sub-type
of the deleted version).

2.3 Version Binding

The management of versions is transparent to users. At the compilation time, a
program/query is associated with a particular version of the schema (by default
the current version). At the run time, the program refers to this schema version.
The function LinkPrSch(p), which binds a program to a schema version, returns
the schema version under which p is compiled.

The reference to an object in a program, is a reference to a version of this
object. It represents the object version, under a class of the schema version
which is associated with the program. The function Link0bjVer (o,p) returns
the version of the object o which represents o’s reference in p.

3 Combining Modification and Versioning

We assume that an update operation is applied to the current version of a
schema. If the operation is accepted, then this update is performed by a schema
modification or a generation of a new version of the schema. The decision to use
schema modification or versioning is outside the scope of this paper. We assume
that the update by modification or versioning is imposed by the user.

A Unified Framework for Supporting Dynamic Schema Evolution 21

As mentioned in the introduction, our approach with regard to instances
adaptation, combines conversion, object versioning and screening. To this end,
the concept of class pertinence levels is introduced [2]. The pertinence level of a
class is a means to characterize the importance of the availability of an object
version, which is an instance of this class.

3.1 Class Pertinence Levels

This notion is based upon what we call a weight of a class. The weight of a class
measures how much the availability of its instances is important for the database
applications. Its definition takes into account both the number of class clients
and the status of a schema version (“historical” or “current”) in which the class
is defined:

— Number of class clients: the number of application programs referencing a
class constitutes an important quantitative metric of its pertinence. When
a class is deleted, the application programs which use the class, should be
modified to be compatible w.r.t the schema version. So, the greather the
number of programs using a class, the less is the interest in deleting it.

— Current version of a schema: Among all schema versions, we consider that
the current version of the schema records information which may reflect more
faithfully the real world.

Definition 1 (Class Weight.). A class weight is a real value within the inter-
val [0,1] and is defined as the ratio of the number of programs associated with
the class by the number of all programs associated with the schema. The classes
defined in the current version of the schema have a mazimal weight (i.e, 1).

To compute the weight of a class (c,n), we use the function CWeight (c,n).
Before giving the definition of this function, we introduce the following notations.
We denote by S the set of schema names, C the set of class names, 0 the set of
object identifiers, N the set of version numbers, and P the set of program names.
We define:

Context (p) as the set of classes which are used in the body of the program

p- This set is formed from classes used as attributes, formal parameters, and

variable types.

— Call(p) as the set of programs called in the body of the program p.

— Ref (p) as the set of classes directly or indirectly referenced in the classes of
Context(p).

— ClassesOfP(p) as the set of classes whose objects may be accessed by the

program p. This set is defined as follows:

ClassesOfP(p) = Context(p) U Ref(p) Upieca”(p) ClassesO fP(p;)

Given a database schema s, the function CWeight is defined as follows:

22 Boualem Benatallah

CWeight : C x N — [0, 1]

) 1 if IsCurrentClass(c,n)
CW@'Lght(C, 7’L) = g card{pi€P/(c,n)EClassesOfP(pi)}
AllPr(s)

otherwise

where:

— IsCurrentClass(c,n) = (¢,n)e SchVerClasses(Current(s)).

— CWeight (c,n) is the weight of the class (c,n).

— A11Pr(s) is the number of all programs which use the database schema s.
We assume that A11Pr(s) # 0.

If the value of CWeight (c,n) is 1, this situation represents the fact that the
availability of the instances of (c,n) is highly important, because either (c,n) is
the current version or it is used in all application programs. However, the value 0
of CWeight (c,n) represents a situation where the availability of the instances of
(c,n) is useless, i.e, (c,n) is defined in a historical version of the schema and is
not used in any application. The intermediate values represent situations where
the availability of the instances of (c,n) is less or more important, depending
on the perception of the database administrator (who is responsible to set up
the threshold for instances availability importance).

Definition 2 (Pertinence Level of a Class.). A class pertinence level char-
acterizes the importance of the availability of the instances of the class with
regards to database applications. Two pertinence values are considered: perti-
nent or obsolete. A class is pertinent if the availability of its instances is highly
important. Otherwise, the class is obsolete.

A database administrator can fix a threshold for the pertinence of classes.
Thus, a class is pertinent if its weight is greater than a threshold (obsolescence
threshold). Otherwise, the class is obsolete. If we denote by PL the function which
determines the pertinence level of a class and 0T (OT € [0, 1]) the obsolescence
threshold, we have:

PL:C x N — {“pertinent”, “obsolete” }
PL(c,n) = { pertinent” if CWeight(c,n) > OT

“obsolete” otherwise

3.2 Instance Adaptation

When an object, say o, is accessed under a class, say (c,n), the system checks
if the object o has a version under (c,n). If not, a new version of o is generated.
This version is physically stored only if (c,n) is a pertinent class. Otherwise,
this version is calculated.

To generate of a new version, stored or calculated, of an object o under a
class (c,n), a sequence of basic primitives, called object version derivation or
deletion, is performed on the object versions. The first primitive of the sequence
is applied on a stored version of the object, called the root of generation.

A Unified Framework for Supporting Dynamic Schema Evolution 23

Version Generation Primitives Five primitives are used for the generation
of object versions: OriginVersion(), Object VersionGen(), Nextclass() (re-
spectively, Previousclass()), and ObjectVersionDerivation().

(P1) Primitive OriginVersion()

An object may have stored and calculated versions. During its life span, an object
must have at least one stored version. The root version to generate the version
of an object o under a class (c,n) is a stored version of o, whose number is the
nearest to n. It is determined by using the function OriginVersion() which is
defined as follows:

OriginVersion: O x (C x N) — O x N
OriginVersion(o,c,n) € {ObjVers(o)/¥(o,j) € ObjVers(o),| n — i |<|
n—jl}

where: ObjVers (o) is the set of stored versions of the object o.

(P2) Primitive ObjectVersionGen()

This operation generates the version of an object when this version is accessed
under a class whose extension does not contain a version of this object. This
primitive is defined as follows:

ObjectVersionGen(oid, [rnum/,cid [,status])

where: oid is the identifier of the object; cid is the identifier of the class;
the optional parameter rnum is the number of the version from which the new
version must be generated; and the optional parameter status takes its values
in the set { ‘stored’’, ‘‘calculated’’}.

The new version is stored (respectively, calculated) if the value of status is
‘’stored’’ (respectively, ¢ ‘calculated’’).If the value of status is not fixed,
then the generated version depends on the pertinence level of its class. It is
stored if its class is pertinent, otherwise it is calculated. The use of the parameter
status is very important in some cases, especially when the generated version
must be stored whatever the pertinence level of cid. These cases are described
in the section 4.

The primitive Object VersionGen() triggers a sequence of derivation prim-
itives on 0id’s versions. The first primitive of the sequence is the derivation of a
version of oid from the root version to generate the version of oid under the class
cid (i.e, (oid,rnum) if the value of rnum is fixed, OriginVersion(oid,cid) oth-
erwise). The last primitive of the sequence generates the version of oid under
cid.

In the remainder of this section, we denote by (c1,n1) the class of the version
OriginVersion(oid,cid) and (co,n2) the class cid. There are two scenarios
about the time-based relationships between the two versions:

1. If the class (c2,n2) is younger than the class (c1,n1) (i.e, ng > ny), then
in the first step, a version of the object oid is derived under the class of

24 Boualem Benatallah

oid, which is the successor of (¢1,n1) in the sequence of oid’s classes. At
the ith step, an object version is derived under the class of oid, which is the
successor of the version of oid, derived at the i-1th step.

2. If the class (c2,n2) is older than the class (¢1,n1) (i.e, na < ny), then in
the first step, a version of the object oid is derived under the class of oid,
which is the predecessor of (c¢1,n1) in the sequence of oid’s classes. At the
i-th step, an object version is derived under the class of oid, which is the
predecessor of the version of oid, derived at the i-1th step.

(P3) Primitives NextClass() and PreviousClass()

The successor (respectively, the predecessor) of a class in a sequence of the classes
of an object, is determined by using the primitive NextClass() (respectively,
PreviousClass). These primitives are defined as follows:

NeztClass: O x (Cx N) — C x N
NezxtClass(o, ¢, k) € {(0,7) € Classes(o)/¥(c,j) € Classes(0),i > k A
i<j}

PreviousClass : O x (C x N) — C x N
NezxtClass(o,c,k) € {(0,7) € Classes(0)/V(c,j) € Classes(0),i < k A
i3}

During the generation process, stored or calculated versions of the object oid
are generated. If the derivation of a version of oid under a class is required, then
the pertinence level of this class is to be determined using the function PL().
If the class is pertinent, then a stored version of oid is generated. Otherwise, a
calculated version of oid is generated.

(P4) Primitive ObjectVersionDerivation()

A new version of an object is derived by using the primitive Object Version-
Derivation(). This primitive generates a stored version of an object, whereas
here an object version may be stored or calculated. For this reason, this prim-
itive is redefined by adding the status parameter, which takes its values in
{¢“stored’’, ¢ ‘calculated’’}. Therefore, this primitive generates a stored
(respectively, calculated) version if the value of status is ¢ “stored’’ (respec-
tively, ‘ ‘calculated’’):

Object VersionDerivation(oid, cidy, cida, status)

Algorithm Below, we summarize the algorithm implementing the instance
adaptation technique.

— When an object o is accessed under a class (c,n), the system checks if the
object o has a version under the class (c,n). If yes, the object is used by the
application without any transformation. If not, a new version of the object
must be generated.

A Unified Framework for Supporting Dynamic Schema Evolution 25

— The algorithm uses the OriginVersion(o,c,n) expression to determine the
root version to generate the version of o under (c,n), and uses the primitive
ObjectVersionGen(o,c,n) to generate the version of o under (c,n).

— After generating the version of the object o under the class (c,n), the algo-
rithm checks if the weight of the class of the root version is equal to zero,
and if the object o has at least another stored version which differ from the
root version. If yes, then the root version is deleted by using the primitive
ObjectVersionDeletion(o,r), such that (o,r)=0OriginVersion(o,c,n).
The weight of a class is equal to zero in the following cases:

1. The class is defined only in a hidden schema version. As pointed out
before, a hidden schema version is a schema version on which a schema
update is performed by a modification.

2. The class is not defined in the current version of the schema and is not
used in any application.

— The deletion of the root version means that the algorithm uses the conversion
when it is not necessary to keep this version. So, the root version is kept only
to satisfy the property requiring that an object must have at least one stored
version.

— The algorithm triggers the generation of a stored object version only if the
associated class is pertinent, i.e:

e It is defined in the current version of the schema or,

e It is used in a number of programs, judged sufficiently high by the
database administrator. Consequently, if we make the simplifying as-
sumption that objects access rate is the same for all programs, then the
object versions associated with this class, are frequently accessed.

The above algorithm generates a version (o,n) of an object o from the stored
version of o, whose number is the nearest to n. Therefore, the generation process
triggers a minimal set of operations on o’s versions. Redundancy is then avoided
and the time of generation is minimized.

4 Language support for Customized Schema Updates

As mentioned in the introduction, the existing approaches provide a fixed set
of schema update operations with pre-defined semantics. However, such a pre-
defined taxonomy of operations is not sufficient for many advanced applications
where schema updates are application specific. The support of such schema up-
dates calls for an extensible language that allows the user to specify the desired
semantic of a schema update. In this way, the language provides means for the
customization of schema updates to the requirement of specific applications.

We propose a language for the specification of relationships between the
states of the database before and after a schema update. We show that, a declar-
ative language (OQL) embedded in the primitives of our language, provides a
full specification of a desired instance adaptation .

% We note that the reader is not required to be familiar with OQL to understand the
material presented in this paper, as the used OQL primitives are self-descriptive.

26 Boualem Benatallah

The aim of the proposed language is to provide constructs for the description
of a relationship between two adjacent schema versions v; and v; (j= i-1 or
i+1). This relationship specifies the desired semantic of the schema update that
generates the version v; from v;. The information provided by these relationships
is used during instances adaptation. A relationship expresses a mapping between
the respective instances of v; and v;. The source of a mapping is a set of classes
defined in v; and the target of this mapping is a class defined in v;. In the
remainder of this paper, we call this relationship an Instance Mapping Descriptor
(IMD).

Intuitively, to describe an IMD, we must localize source objects that are re-
lated to a given target object and specify how these objects are related. Thus, in
our approach an IMD consists of two basic expressions: the localization expres-
sion and the dependency expression. The next subsection presents the instance
mapping language through an example. Subsection 4.2 defines an instance map-
ping descriptor.

4.1 An Example

To illustrate the process of an IMD specification, we consider the database
schema that contains the class CProgram, whose objects are programs written
in the C language and the class JavaProgram, whose objects are programs writ-
ten in the Java language. Let us consider the schema update that merges the
classes Cprogram and JavaProgram into one single class, called Program. In this
example, we want that the definition of the new class Program will contain an
attribute, called Language, whose value is a string indicating the language used
to write the corresponding program. The definition of the other attributes of the
class Program is ignored here for clarity reasons.

We will now describe intuitively our instance mapping language. When up-
dating the schema, the user can use this language to specify a mapping between
the instances of the database before and after the schema update. In this exam-
ple, we want to specify the following facts:

— All objects of CProgram and JavaProgram are also objects of Program.

— The value of the attribute Language in a version of an object of
Program which is also an object of CProgram (respectively, JavaProgram)
is ‘CProgram’’ (respectively, ¢ JavaProgram’’).

As pointed out before, our language features two expressions for specifying
an instance mapping: the localization expression and the dependency expression.
The first expression localizes source objects that have a link with a given target
object. The second expression describes the relationship between the value of
the version of an object under the target class and the values of versions of its
related objects under the source classes.

In this example, the instance mapping can be specified by the following de-
scriptor:

A Unified Framework for Supporting Dynamic Schema Evolution 27

source {CProgram, JavaProgram} target Program
localization
query Objects (CProgram) union Objects(JavaProgram)
link same-as-source
dependency
Language derived with
element (select *
from {‘‘CProgram’’,‘‘JavaProgram’’} as name
where name in ClassNames(this))

Where:

— ClassNames (o) is a set that contains the names of the classes of the object o.

The target is Program and the source is the set {CProgram, JavaProgram}.
The localization clause introduces the localization of CProgram and JavaProgram
objects. The dependency clause introduces the relationship between the version
of an object under Program and the version of this object under Cprogram or
JavaProgram.

Let us now show how an IMD is used to customize the semantics of a schema
update. In our approach an IMD is used to:

1. Initialize the extension of the target class. After merging CProgram and
JavaPrograminto Program, the system uses the above descriptor to initialize
the extension of Program as follows :

— For each object in Objects (CProgram) union Objects(JavaProgram),
a new version is generated under the class Program.

— The value of the attribute Language in the new version (generated in
the previous step), is initialized to be the name of the class of the
source object. A new version of an object o of the class ¢ (i.e, CProgram
or JavaProgram), under the class Program, is derived by using the fol-
lowing primitive:

ObjectVersionDerivation(c,Program, o)
Language derived with element (select *

from {‘‘CProgram’’,‘‘JavaProgram’’} as name
where name in ClassNames (o))

2. Propagate the update of the extension of a source class to the extension of
a target class. When a new version of an object o is created under the class
CProgram or the class JavaProgram, another version of o is created under
the class Program. The last version is derived from the first one using the
primitive described above.

In the remainder of this paper, we focus on the first issue. Details about the
second issue can be found in [1].

28 Boualem Benatallah

4.2 Instance mapping descriptor

The syntax we use to specify an IMD is the following:

source {class-name+} target class-name
localization
query localization-expression
link target-object-id
dependency
(attribute-name attribute-specification)+
attribute-specification ::= derived attribute* with function-body
target-object-id ::= same-as-source or new
attribute ::= attribute-name class-name
attribute-name, class-name, function-body ::= string

The source and target clauses are self-descriptive. The following subsections
describe the localization and dependency clauses.

Localization clause. The localization expression consists of two elements. The
first element is a declarative query that selects the identifiers of source objects
that will be related within an identifier of a target object. This query is intro-
duced by the keyword query. The scope of this query contains objects of source
classes. The second element is the expression that defines how a target objet is
linked with a set of source objects. This expression is introduced by the keyword
link. Without loss of generality, we consider two types of links:

1. The identifier of the target object is new. In this case, the keyword
link is followed by the keyword mew. For example, assume that the
schema s has two versions (s,0) and (s,1). The version (s,0) con-
tains the classes Student and Employee. The version (s,1) contains the
class Employee-Student. Consider the schema update that merges the
classes Employee and Student into the class Employee-Student. Assume
that we want to implement this schema update as follows: the objects
of Employee-Student are constructed by joining pairs of objects from
Employee and Student on the attribute Name (we assume that Name is a key
attribute for Employee and Student). To this end, we specify the following
descriptor:

source {Employee, Student} target Employee-Student
localization
query select struct(idl : x, id2 : y)
from Objects(Employee) as x, Objects(Students) as y
where x.Name=y.Name
link new

A Unified Framework for Supporting Dynamic Schema Evolution 29

When the class Employee-Student is created, its extension is initialized by
using the information provided in the previous IMD. First, the query of
the localization expression is evaluated. This query returns a set of pairs of
objects formed by joining Objects (Employee) and Objects (Student). Two
objects form a pair if they have the same name. Second, the link expression
of IMD informs the system that for each pair (x,y) of the set returned by
the query, a new object o of the class Employee-Student is to be created.
The link between (x,y) and o is materialized for future use. We use the
expression TargetLink(o) to determine the set of source objects that are
related with the target object o.

2. The identifier of the target object is a source object. In this case,
the keyword link is followed by the keyword same-as-source. Consider the
schema update that merges the classes Cprogram and JavaProgram into the
class Program. When the class Program is created, its extension is initialized
as follows. The query Objects(CProgram) union Objects(JavaProgram)
is evaluated. After that, each object of the returned set is added to the ex-
tension of the class Program. This means that for each of these objects, a
new version is to be created.

Dependency clause. The dependency expression of an IMD specifies the re-
lationships between the attributes of the target class and those of the source
classes. It is introduced by the dependency clause. For a given attribute, this
expression defines how to compute the value of this attribute. Thus, it provides
a means to initialize or modify the value of the version of an object under the
target class.

In an IMD, the specification of the dependency expression of an attribute
contains two elements. The first element is the name of the attribute of the tar-
get class. The second element is the function that computes the value of this
attribute. This function is introduced by the keyword derived with and is an
OQL query. Consider the schema update that merges the classes CProgram and
JavaProgram into the class Program. The dependency expression of the attribute
Language is described as follows:

Language derived with
element (select *
from {‘‘CProgram’’,‘‘JavaProgram’’} as name
where name in ClassNames(this))

When a new version of an object in Objects(CProgram) union
Objects(JavaProgram) is created under the class Program, the value of the
attribute Language in this version is initialized using the information provided
by the above dependency expression. That is, the name of the class of the root
version, is set to the value of the attribute Language.

30 Boualem Benatallah

5 Conclusion

In this paper, we proposed a unified framework for supporting dynamic schema
evolution in object oriented databases. A schema update is performed by a mod-
ification of the schema, only if it is not substractive (i.e, does not involve infor-
mation deletion) or the user imposes the “modification” mode. The proposed
technique for supporting instances adaptation after a schema update, is based
upon the evaluation of the pertinence of the availability of object versions w.r.t
applications. The number of versions is limited to those which are frequently
accessed. We proposed an extensible language that can be used to specify a
desired semantics of a schema update. This language provides means for the
customization of schema updates to the requirement of specific applications. We
have also implemented the proposed schema update mechanism on top of an
object-oriented DBMS. Due to space reasons, the description of the prototype
is outside the scope of this paper.

References

1. Benatallah, B. Evolution du schema d’une base de donnees a objets: une approche
par compromis. PhD dissertation, University of Joseph Fourrier, Grenoble, March
1996. 16, 19, 27

2. Benatallah, B. and Tari, Z. Dealing with Version Pertinence to Design an Efficient
Object Database Schema FEvolution Mechanism. The IEEE Int. Database Engineer-
ing and Applications Symposium - IDEAS ‘98, July 1998, Cardiff, Wales, UK. 21

3. Breche, P. and Ferrandina, F. and Kuklok, M. Simulation of schema and database
modification using views. Proc. of DEXA’95, London, UK, 1995. 17

4. Clamen, S. Schema Evolution and Integration. Distributed and Parallel Databases
Journal, Vol. 2(1), Jan. 1993. 17, 17

5. Claypool, K. and Rundensteiner, E. Flezible Database Transformations: The SERF
Approach. IEEE Data Engineering Bulletin 22(1), 1999. 18

6. Ferrandina, F., Meyer, T., and Zicari, R. Schema and Database FEvolution in the
02 system. Proc. of the 21th VLDB Int. Conf., Zurich, Sept. 1995. 17, 17, 20

7. Fontana, E. Dennebouy, Y. Schema Evolution by using Timestamped Versions and
Lazy Strategy. Proc. of the French Database Conf. (BDA), Nancy, Aug. 1994. 17,
17

8. Monk, S. and Sommerville, I. Schema Evolution in OODBs Using Class Versioning.
SIGMOD RECORD, 22(3), Sept. 1993. 17, 17

9. Penny, D. and Stein, J. Class Modification in the GemdStone Object-Oriented
DBMS. Proc. of the ACM OOPSLA Int. Conf., Sept. 1987. 17

10. Ra, Y. and Rundensteiner, E. A Transparent Schema-Evolution System Based on
Object-Oriented View Technology. TKDE, 1997. 16, 17

11. Rodick, J. A survey of schema versioning issues for database systems. Information
and Software Technology, 1995, 37(7) 383-393, Elsevier Science B.V. 16, 17

12. Zdonik, S. Object-Oriented type evolution. Advances in Database Programming
Languages. ACM Press, (Bancilhon F., Bunema P. editors), 1990, pp. 277-288.
16, 17, 17

	Introduction
	Background
	Contributions

	Basic Concepts and Definitions
	Schema - Schema Version
	Object - Object Version
	Version Binding

	Combining Modification and Versioning
	Class Pertinence Levels
	Instance Adaptation

	Language support for Customized Schema Updates
	An Example
	Instance mapping descriptor

	Conclusion

